treatment doses of MP used in this study seem high compared with industrial usage limit (CIR expert panel, 2008), our data provide evidence regarding the hypothesis that overdosage of MP may induce alterations in ECM components by concentrating senescent dermal fibroblasts in the dermis.

CELL CULTURES
Institutional approval of human materials was not required because Korean laws consider that the human cell line that has insignificant effects on donor and public risk is subject to the exemption from institutional approval.

CONFLICT OF INTEREST
The authors state no conflict of interest.

ACKNOWLEDGMENTS
This study was supported by a grant from the Ministry of Science, ICT and Future Planning (Grant 20110028646) of the Korea. The authors are grateful to Jae Ho Lee (the Kwandong University College of Medicine, Seoul), Su-Jae Lee (the Hanyang University, Seoul), In-Chul Park (the Korea Institute of Radiological and Medical Sciences, Seoul), Chun-Ho Kim (the Korea Institute of Radiological and Medical Sciences, Seoul), Kee-Ho Lee (the Korea Institute of Radiological and Medical Sciences, Seoul), and Soo-Hyun Lee (MCTT, Seoul) for their invaluable discussions regarding this study.

Hwa Jun Cha1, Seunghee Bae1, Karam Kim1, Seung Bin Kwon1, In-Sook An1, Kyu Joong Ahn2, Jungwha Ryu1, Hey-Sun Kim1, Sang-Kyu Ye3, Byung-Hak Kim3 and Sungkwan An1
1Korea Institute for Skin and Clinical Sciences and Molecular-Targeted Drug Research Center, Konkuk University, Seoul, Korea; 2Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea and 3Department of Pharmacology and Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, Korea
E-mail: protein0826@snu.ac.kr or ansigrc@konkuk.ac.kr

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at http://www.nature.com/jid

REFERENCES

Confocal Imaging–Guided Laser Ablation of Basal Cell Carcinomas: An Ex Vivo Study

Journal of Investigative Dermatology (2015) 135, 612–615; doi:10.1038/jid.2014.371; published online 25 September 2014

TO THE EDITOR
Laser ablation is a promising approach for minimally invasive removal of superficial and early nodular basal cell carcinomas (BCCs; Smucker and Vlk, 2008; Smucker et al., 2012). The skin can be removed in μm-thin layers in a well-controlled manner, increasing preservation of the surrounding normal tissue. However, tissue is vaporized such that there is none available for immediate histopathological confirmation. The efficacy tends to be variable and recurrence rate (8.25%) low (Smucker and Vlk, 2008), compared with that reported for Mohs surgery (2.1–3.5%; Chren et al., 2011; 2013), excision (3.5–4.2%), and electrodessication and curettage (1.6–4.9%). Thus,
the implementation of laser ablation for BCCs in a clinical setting is still limited. A high-resolution nuclear-level optical imaging approach such as reflectance confocal microscopy (RCM; Nori et al., 2004; Guitera et al., 2012) may guide laser ablation by detecting the presence or clearance of residual BCCs directly on the patient, to provide immediate histopathology-like feedback to improve the efficacy. Preliminary studies in human skin ex vivo with acetic acid for nuclear contrast (Sierra et al., 2013) and in vivo with aluminum chloride (Chen et al., 2014) revealed feasibility of imaging in post-ablated tissue. However, the imaging was of variable quality. Ablation was performed with a pulsed Erbium-doped Yttrium Aluminum Garnet (Er:YAG) laser, with pulse duration of ~250 μs that produces an underlying zone of thermal coagulation of ~20 μm (Hohenleutner et al., 1997).

We therefore hypothesized that loss of tissue viability due to thermal coagulation must affect the repeatability and consistency of uptake of contrast agent and imaging of residual tumor. We may control thermal coagulation with optimal choice of ablation parameters (pulse duration, fluence, number of pulses, and wavelength). This may subsequently allow repeatable and consistent uptake of contrast agent and imaging of residual nuclear morphology and detection of residual BCC tumors. In this Letter, we report the results of an extended study for determining optimal fluence and number of pulses for a given wavelength and pulse duration.

Fifty-eight discarded frozen-thawed BCC specimens from Mohs surgery were obtained under an Institutional review board-approved protocol. The tissue was immersed in acetic acid (5%, 30s) for brightening nuclear morphology (“acetowhitenning”) using a previously described protocol (Patel et al., 2007). A reflectance confocal microscope (Vivascope 1500, Caliber Imaging and Diagnostics, Rochester, NY) was used to capture mosaics, displaying areas of 8 mm × 8 mm, of the skin and to determine regions containing BCCs. A selected region containing BCCs was ablated with our Er:YAG laser (Sciton Profile, Palo Alto, CA; wavelength 2.94 μm, spot diameter 4 mm), using fluences of 6.3, 12.5, 17.5, and 25.0 J cm⁻² and number of passes 1–8. Each pass is a set of four independent pulses, separated by ~40 ms. All specimens were imaged, ablated, once again immersed in acetic acid, then imaged and finally processed for frozen histopathology. En face sections were prepared of the ablated surface that was imaged. RCM mosaics were qualitatively evaluated against the corresponding histopathology for the appearance of
nuclear, residual BCC tumor, and surrounding dermal morphology. The evaluation showed that a total delivered fluence of up to 150 J/cm² (maximum fluence 25 J/cm² and 6 consecutive passes) allows repeatable and consistent uptake of contrast agent and RCM imaging. For higher total fluences, delivered in more than 6 consecutive number of passes without any tissue cooling in-between, the nuclear morphology appears amorphous, and the residual tumor cannot be distinguished from the surrounding dermis. This must be due to the increase in thermal coagulation with increased number of passes (Walsh et al., 1989; Hohenleutner et al., 1997). However, in specimens in which ablation was performed with time interval of at least 1–2 s between multiple treatments (each consisting of maximum 6 consecutive passes), for passive cooling of the tissue, we can control thermal coagulation to allow the subsequent uptake of contrast agent and imaging. These observations were confirmed in the histopathology. (The limit of 6 warrants further investigation. Possibly, 6 may not be an intrinsic limit, and active cooling of the skin may allow more number of consecutive passes.)

To quantify the accuracy for detecting the clearance or the presence of tumor after ablation, 15 specimens were selected. We selected specimens with reasonably consistent initial conditions: (a) contained large tumors and (b) treated with highest available fluence of 25 J/cm² and a total of 1–10 passes, with no more than 6 consecutive passes per treatment. The presence or absence of tumor was evaluated in 30 half-mosaics (approximately × 5 magnification) against histopathology. The clearance rate, sensitivity, and specificity were estimated. RCM imaging found an overall clearance rate of 40% compared with 23% by inspection of histopathology. Agreement between the confocal assessment for the presence of residual tumor with histopathology was 77%. The preliminary measures of accuracy are 74% sensitivity and 86% specificity.

To mimic in vivo conditions, 10 additional specimens with intact stratum corneum were imaged and ablated with the intention of completely clearing tumor, using fluence of 25 J/cm² and one treatment, each of 1–6 passes. The number of passes were determined on the basis of the depth of the tumor, as estimated with pre-ablation imaging. (We have previously characterized depth of ablation per pass with fluence for this laser (Sierra et al., 2013)). After ablation, a RCM mosaic of the ablated surface was captured. Vertical frozen sections were then prepared from the superficial and deep margins of the ablated regions.

Figure 1 demonstrates the ability of RCM imaging to detect the presence and clearance of residual BCC tumor. Mosaics and images are shown of a specimen that was ablated through intact stratum corneum, with fluence of 25 J/cm² and 6 passes. Vertical histopathology sections through the ablated region confirmed the observations at the superficial and deep margins of the post-ablated wounds.

In Figure 1a, a pre-ablation mosaic at the dermal–epidermal junction (~130 μm depth) shows nodular BCCs (region inside both solid and dotted yellow squares). Enlarged views of the two regions within these solid and dotted squares (Figure 1b and c, respectively) show more clearly clusters of bright densely distributed nuclei and the nodular morphology of the tumors. Figure 1d shows a post-ablation mosaic. An enlarged view (Figure 1e) of the area in the solid yellow square shows only dermal collagen and confirms clearance of tumor. By comparison, an enlarged view (Figure 1f) of the region within the dashed yellow square shows clusters of densely distributed bright nuclei closer to the edge of the wound and indicates the presence of residual tumor. Figure 1g shows a vertical frozen histopathology section through the wound, at the location of the dashed orange line in Figure 1d. The section confirms the clearance of tumor in the center of the wound (solid black rectangle, which corresponds to the location of the dashed orange line within the solid yellow square in Figure 1d) and the presence of residual tumor closer to the edge (dashed black rectangle, which corresponds to the location of the dashed orange line within the dashed yellow square in Figure 1d). The pathology indicates the maximum depth of ablation to be ~160 μm, and a thin layer of darker stained amorphous tissue (not obvious at low magnification) indicates a thermal coagulation zone of approximately 20–30 μm. Figure 1h and i show magnified views of the histopathology (corresponding to the location of the dashed orange line in Figure 1e and f), which further confirms, respectively, the clearance and the presence of tumor.

For all 10 specimens, the histopathology sections confirm the observations in RCM mosaics regarding clearance of tumor or presence. The clearance, as intended, was seen in 9 specimens (true negatives) and the (unintended) presence in 1 (“false negative”). These initial results suggest that imaging may enable less invasive treatment via localized control on the depth of ablation, with potentially high negative predictive value. Furthermore, the estimation of lateral margins (not performed here, but feasible on patients (Pan et al., 2012)), in addition to depth, may improve the accuracy of ablation. However, the results highlight the current limitation of the imaging, which is mainly contrast (while resolution appears to be sufficient) for detectability of residual tumors. Further investigation and optimization of this approach for enhancement of tumor-to-dermis contrast is necessary.

Our work, together with other studies in vivo (Tannous et al., 2003; Nori et al. 2004; Scope et al., 2010; Guitera et al., 2012; Pan et al., 2012; Chen et al., 2014), suggests the potential possibility of peri-operative RCM imaging of superficial and early nodular BCCs to guide noninvasive diagnosis, pretreatment detection of tumor margins, less invasive (ablative) treatment, and post-treatment monitoring, directly on the patient. The ablation may be combined with other approaches such as debulking of tumor for enhancing the efficacy of treatment. Further clinical studies must be performed to rigorously test for accuracy (particularly, negative predictive value and recurrence rate for different subtypes of BCCs), combined with training for reading and interpretation of images.
CONFLICT OF INTEREST
Three authors (HS, MC, and C-SJCh) state no conflict of interest. One author (MR) owns equity in Caliber Imaging and Diagnostics (formerly, Lucid Inc.).

ACKNOWLEDGMENTS
We thank the National Institutes of Health for funding support (grant R01EB012466 from NIBIB’s Image-guided Interventions program).

Heidy Sierra1, Miguel Cordova1, Chih-Shan Jason Chen1,2 and Milind Rajadhyaksha1,2
1Dermatology Service, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
E-mail: sierragh@mskcc.org
2These authors contributed equally to this work and both shared senior authorship.

REFERENCES
Chen ChJ, Sierra H, Cordova M et al. (2014) Confocal microscopy guided laser ablation for superficial and early nodular basal cell carcinoma. JAMA Dermatol 150:994–8

Pathogenicity of POFUT1 in Dowling-Degos Disease:
Additional Mutations and Clinical Overlap with Reticulate Acropigmentation of Kitamura


TO THE EDITOR
Dowling-Degos disease (DDD (MIM 179850, MIM 615327)) is an autosomal dominant form of a reticulate pigmentary disorder. Affected individuals develop a progressive and disfiguring post-pubertal reticulate hyperpigmentation and small hyperkeratotic dark-brown papules, which mainly affect the flexures, great skin folds, trunk, face, and extremities. We previously identified loss-of-function mutations in keratin 5 (KRT5) (Betz et al., 2006) in fewer than half of our DDD patients, and just recently we described mutations in POGUT1, which explain about one-third of our DDD cases (Basmanav et al., 2014). POGUT1 encodes protein O-glucosyltransferase 1 and is part of the Notch signaling pathway. Li et al. (2013) recently reported mutations in POFUT1 (MIM 607491), encoding O-fucosyltransferase 1, also involved in the Notch pathway, in two Chinese families with DDD. Here, we report on the clinical and molecular findings in eight patients/families with DDD of different ethnicities.

After excluding KRT5 and POGUT1 mutations, we screened a total of 24 DDD patients for mutations in POFUT1 by Sanger sequencing. Ethical approval was obtained from the ethics committee of the Medical Faculty of the University of Düsseldorf; the participants provided written informed consent prior to blood sampling. Patient consent was received for publishing identifying information and photographs. The study was conducted in concordance with the Declaration of Helsinki Principles.

In sporadic cases from Germany (n=1), Poland (n=1), and India (n=1) and familial cases from Denmark (n=1) and Germany (n=1), we identified five different mutations, designated c.86G>A (p.Trp29*), c.718C>T (p.Arg240Cys), c.785T>C (p.Met262Thr), c.1067C>T (p.Ser356Phe), and c.1096C>T (p.Arg366Trp) (Figure 1a,