The 65th annual Montagna Symposium on the Biology of the Skin, “The Skin: Our Sensory Organ for Itch, Pain, Touch, and Pleasure,” was held October 20−24, 2016, in Gleneden Beach, Oregon, USA. Gil Yosipovitch (University of Miami, Florida) served as Program Chair, with Ethan Lerner (Harvard Medical School/Massachusetts General Hospital, Boston), Diana Bautista (University of California, Berkeley, California), Ellen A. Lumpkin (Columbia University, New York, New York), and Francis McGlone (Liverpool John Moores University, UK) serving as Session Chairs.

Although knowledge gained from research on each class of skin sensory nerve fiber—in health and disease—has been substantial in recent years, these classes have largely been studied separately, and crucial questions remain unanswered regarding the overlap and integration of these parallel cutaneous somatosensory pathways. For example, both itch and pain interact in an antagonistic manner: scratch-induced pain can relieve itch, frequently producing pleasure; opioids can induce itch, and their receptor antagonists have been shown to be effective in its treatment. There are broad overlaps, with evidence of a common mechanism in peripheral sensitization and in central sensitization to itch and pain, implicating Aδ- and C-fiber nociceptors. Presenting up-to-the-minute research on the multifaceted properties of skin sensory receptors, nerves, and central projections highlighted the often unrecognized strong interactions between them and provided exceptional opportunities for the fertile discussions that followed each talk, touching on the potential to translate across experimental and clinical contexts.

The symposium began with a keynote lecture from Francis McGlone on the role of C fibers in humans. Although C fibers have a classic role as polymodal nociceptors, pruriceptors, and autonomic efferents, Dr. McGlone emphasized that in humans, and in all mammalian skin, a subset of C fibers called C-tactile afferents (CT) responds to low-force touch. Their discovery in human hairy skin has led to a view of the skin as a “social organ” as well as a “protective organ.” Dr. McGlone introduced the concept of a “hedonic homunculus” to emphasize that these fibers have a distinct central projection to a para-limbic brain area, the insular cortex, that processes information concerned more with “feeling” than “sensing.”

The presentations in the “Itch” session were primarily neurocentric and incorporated crosswalk with the immune system and the cutaneous environment. The use of state-of-the-art techniques was a feature of this session, including the power of genetics to investigate neurocircuits, optogenetics, ex vivo preparations consisting of skin attached to the spinal cord, and imaging. These approaches allowed for detailed information to be communicated with respect to current knowledge regarding mediators, modulators, neurocircuitry, and therapeutic targets.

Session Chair Ethan Lerner set the tone with provocative questions: “Why do we itch (To remove pathogens? To keep the immune system active?)” and “What is the sequence of events? (Is it the itch that ‘rashes’ or the rash that itches?)” Dr. Lerner then shared work from his laboratory, first focusing on the role of sensory neurons in the development of skin inflammation and itch using in vivo imaging in a mouse ear skin allergic hypersensitivity model and then showing that substance P-evoked scratching, which was originally thought to be mediated by the neurokinin-1 receptor (i.e., NK1R), is mediated by Mrgpr receptors.

Earl Carstens (University of California, Davis) presented behavioral and expression data suggesting that neurokinin-1 receptor is a key component of itch-specific spinothalamic projection neurons. He also highlighted recently developed genetic and induced models of chronic itch (including mouse models of psoriasis and a model with dietary deprivation of polysaturated fatty acids that results in skin rash), as well as methods for studying enigmatic neuropathic itch, or allodynia.

1Department of Physiology and Cellular Biophysics and Neurobiology and Behavior Training Program, Columbia University, New York, New York, USA; 2Department of Molecular and Cell Biology, University of California—Berkeley, Berkeley, California, USA; 3Research Centre for Brain and Behaviour, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK; 4Institute of Psychology, Health and Society, University of Liverpool, UK; 5Presidential Scholars in Society and Neuroscience, Columbia University, New York, New York, USA; 6Departments of Dermatology and Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA; and 7Department of Dermatology and Miami Itch Center, Miller School of Medicine, University of Miami, Miami, Florida, USA

These authors contributed equally to this work.

Correspondence: Molly Kulesz-Martin, Departments of Dermatology and Cell, Developmental, and Cancer Biology, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, L468R, Portland, Oregon 97239, USA. E-mail: kuleszma@ohsu.edu

Abbreviations: CT, C-tactile afferent; LTMR, low-threshold mechanosensory neurons
Sonja Ständer (University of Münster, Germany) presented findings from clinical studies using quantitative sensory testing on patients in conjunction with experimental therapies to treat neuropathic and recalcitrant itch. Of the topical treatments, they have tested an 8% capsaicin patch and found significant relief of chronic itch for months after just a single 1-hour application.

Diana Bautista followed up with her laboratory’s recent work on mouse models of acute and chronic itch. She provided behavioral data showing that certain immune cells, previously implicated in pain hypersensitivity, play a role in both acute and chronic itch. Her group has found that a chemokine associated with human atopic dermatitis is sufficient to evoke itch behaviors and is correlated with itch in a mouse model of atopic dermatitis, extending her previous study, which exploited natural variation in itchy behaviors among genetically distinct mouse strains to identify itch-associated candidate genes in sensory neurons and spinal cord.

Mark Hoon (National Institute of Dental and Craniofacial Research, Bethesda, Maryland) related his laboratory’s recent work on the role of somatostatin-expressing sensory neurons in itch. His group has found that natriuretic peptide precursor B-expressing somatosensory neurons, thought to specifically transmit itch signals, co-express the neurotransmitter somatostatin. Dr. Hoon detailed a variety of optogenetic and genetic tools being used (i) to test the hypothesis that somatostatin is an important itch-specific neurotransmitter required for spinal processing of itch via inhibition of inhibitory interneurons and (ii) to understand how the release of somatostatin from primary afferents modulates spinal cord processing of itch and response to counter stimuli.

Sarah Ross (University of Pittsburgh, Pennsylvania) focused on the role of counter stimuli in itch inhibition via a specialized class of spinal cord neurons that her group discovered, the Bhlhb5-expressing inhibitory neuron (B5-I), and their importance in integrating itch and pain signals. Her group used a system for ex vivo stimulation of the periphery or dorsal root ganglion while simultaneously recording from the Bhlhb5-expressing inhibitory neuron population in the dorsal horn of the spinal cord. They have shown an electrophysiological basis for the inhibition of itch via soothing menthol or painful capsaicin via activation of the Bhlhb5-expressing inhibitory neuron population, which expresses neuronal nitric oxide synthase and galanin, and have also shown a role for dynorphin tone in the spinal cord as a means by which Bhlhb5-expressing inhibitory neuron activity is modulated and itch is actively suppressed.

The “Itch” session closed with a talk from Nicole Ward (Case Western Reserve University, Cleveland, Ohio), who related her laboratory’s work on the interplay of neurons and immune cells in genetic and induced mouse models of psoriasis. Dr. Ward described the dermatom-specific manifestation of psoriasis in humans and the role of skin innervation in the pathogenesis of the KcTie2 and the imiquimod psoriasis mouse models, showing that denervation leads to skin thinning and attenuation of disease phenotype.

Discussion of the relationship and the molecular level between itch and pain, for example, through release of factors in itch that block pain, provided an intriguing segue to the next session.

The “Pain” session, chaired by Diana Bautista, focused on the molecular and cellular mechanisms underlying acute and chronic pain in the periphery and spinal cord. Presentations and productive discussion introduced cutting-edge techniques and novel therapies and centered on three issues: (i) the use of novel molecular genetic tools to define and manipulate the molecules, cells, and circuits of pain; (ii) the pros and cons of distinct animal models of pain; and (iii) the identification of novel therapeutic targets and approaches and how to move them from the bench to the clinic.

The use of sophisticated tools to define and manipulate the molecules, cells, and circuits that drive pain was a major theme of this session. Cheryl Stucky (Medical College of Wisconsin, Milwaukee) shared work on the use of optogenetics to examine the role of calcitonin gene-related peptide-positive dorsal root ganglion neurons in neuropathic, incision, and inflammatory pain. Rebecca Seal (University of Pittsburgh, Pennsylvania) discussed her study of transgenic mice that express designer receptors exclusively activated by designer drugs, or DREADDs, in the vesicular glutamate transporter type 3-positive dorsal horn neurons in neuropathic and inflammatory pain models. She described the identification of novel neuronal populations that are unique to distinct pain models. For example, the spared nerve injury model of neuropathic pain and the Complete Freund’s Adjuvant model of inflammatory pain engage very different cells and circuits. Finally, Qifu Ma (Harvard Medical School, Boston, Massachusetts) presented his studies of cre-recombinase lines that mark distinct populations of spinal neurons, showing that there are many subpopulations that each contribute differentially to itch and/or pain. Although these studies share the common goal of defining cell types that promote acute and chronic pain, the parallel approaches yielded unique insights into the underpinnings of pain. The talks triggered a timely discussion on the pros and cons of distinct mouse models and the increasing number of studies showing that constitutive ablation and acute silencing of cells in the pain circuit are not equivalent. Overall, the discussion highlighted the importance of using different approaches and pain models to gain insights into pain circuit function.

Allan Basbaum (University of California, San Francisco) and Daniel Bruce (University of Minnesota, Minneapolis) provided information on two therapeutic strategies for combating pain. Dr. Basbaum showed that transplanting medial ganglionic eminence neurons from the cortex of embryonic mice into the dorsal horn of adult mice dramatically attenuated neuropathic pain or itch. The transplanted neurons integrated into local circuits, restored normal γ-aminobutyric acid inhibitory signaling in the dorsal horn, and did not affect other sensory modalities. Dr. Bruce showed evidence that dual treatment with the peripherally restrictive and selective opioid agonists loperamide and oxymorphindole attenuates chronic inflammatory pain.

The session ended with Martin Schmelz (University of Heidelberg, Germany) discussing the nerve growth
Hironobu Fujiwara (RIKEN Center for Developmental Biology, Hyogo, Japan) and Ellen Lumpkin focused on key roles of skin cells and epidermal appendages in touch sensation. Dr. Fujiwara described a novel component of hair follicle extracellular matrix (epidermal growth factor-like domain multiple 6) and its role in formation and function of hair follicle-neurite lanceolate complexes, which mediate rapidly adapting responses to touch. Dr. Lumpkin discussed cellular and molecular mechanisms of mechanotransduction in Merkel cell-neurite complexes, which are slowly adapting touch receptors. Dr. Lumpkin summarized recent physiological studies that show that Merkel cells are mechanosensory receptor cells that are both necessary and sufficient to produce prolonged firing in touch-dome afferents. Finally, Dr. Lumpkin presented data findings on the Merkel cell's presynaptic release machinery, spurring discussion on the identities of neurotransmitters at the Merkel cell-neurite synapse.

Victoria Abraira (Harvard Medical School, Boston, Massachusetts) concluded the “Touch” session with a presentation on the architecture of mechanosensory circuits in the deep dorsal horn. Dr. Abraira summarized recent findings on the organization of inputs from low-threshold mechanosensory neurons (LTMRs) into the spinal cord and the identity of neurons downstream of LTMRs, showing that the LTMR recipient zone is 250 μm below lamina II in the dorsal horn and that 60% of the postsynaptic neurons in this zone are excitatory. Eleven interneuron subtypes were distinguished by electrophysiology and morphology, most of which participate in feedforward inhibition, but some are capable of presynaptic inhibition. Additionally, Dr. Abraira showed that the somatosensory cortex provides top-down modulation to the LTMR recipient zone, suggesting that modulation from the cortex might enable the LTMR recipient zone to modulate sensation.

Returning to themes presented in Francis McGlone’s talk, biological anthropologist Nina G. Jablonski (The Pennsylvania State University, State College) presented a second keynote at the Saturday banquet on the evolution of human skin as a sensory organ, focusing on two aspects of affiliative touch: highly sensitive discriminative touch and pleasurably, socially reinforcing touch. Social cohesion in primate groups is based on alliances maintained through these affiliative touch mechanisms, and affiliative touch is essential to human psychological development and can have profound effects on interpersonal interactions.

The final session, “Pleasure,” was chaired by Francis McGlone and explored evidence for what distinguishes touch perceived as pleasant on the skin from other sensation, such as mechanical pressure or pain. Understanding these distinctions has implications for compliance with topical treatments or disease, as well as with soothing touch to address chronic pain or itch. Talks in this session showed that field area, stroking velocity, and temperature all factored in this type of touch, beginning with Helena Saling’s (University of Gothenburg, Sweden) presentation describing single-unit microneurography to characterize the receptive fields and firing properties of human CTs. Subsequent psychophysical studies using a robotic tactile stimulator found that these velocities of approximately 5 cm/second were reported as the most pleasant compared with slower or faster velocities, a finding quantified by the use of facial electromyography. The maximal activation of CTs by stimulating stimuli delivered at skin temperature reinforced the hypothesis that CTs are the neurobiological substrate driving affective and affiliative nurturant touch.

Håkan Olausson (Linköping University, Sweden) continued the discussion of touch afferents, first by presenting a case study in which patients had selective degeneration of large myelinated afferents but intact C afferents and, therefore, CTs. These patients reported an absence of tickle but reported a pleasant sensation when stroked on hairy skin with a soft brush. When touched on glabrous skin, detection of touch was absent. Dr. Olausson further characterized CTs by functional magnetic resonance imaging, showing activation of the insula and deactivation of primary somatosensory cortex (S1) with CT stimulation. Transcranial magnetic stimulation in S1 changed the intensity of the stimulation but not the
pleasantness, suggesting that affective touch is processed in a distinct cortical region.

Susannah Walker (Liverpool John Moores University, UK) continued the discussion on CTs with her presentation on the affective value of touch. Dr. Walker showed that heart rate and electromyographic recordings from “smile” and “frown” facial muscles can be used to evaluate the pleasantness of a stimulus, and using these methods, brushing stimuli are rated as most pleasant when delivered to the arm at CT-preferred velocities. Additionally, Dr. Walker showed that pairing neutral faces with stimuli that maximally activate CT afferents increased the approachability ratings of the neutral faces. Finally, Dr. Walker showed that dopamine is released in the nucleus accumbens with stroking in rats and that oxytocin is released with massage, suggesting that these systems might be recruited with CT stimulation in humans.

Gil Yosipovitch, in the closing talk, synthesized symposium topics by expounding on the pleasure and reward associated with scratching an itch. Chronic itch patients, particularly AD patients, often cite the pleasure evoked by scratching. Examination of this sensation with functional magnetic resonance imaging by his laboratory has implicated both reward and addiction centers, such as the striatum and the prefrontal cortex, in scratching in healthy and chronic itch patients. Dr. Yosipovitch touched on the “contagious” nature of itch and scratching, hypothesizing that higher-order brain regions activated by itch may contribute to this complex phenomenon.

Dr. Yosipovitch moderated a final interactive session, titled “Future Directions: Applying New Approaches to Skin Sensation Research,” addressing treatments, funding strategies, unmet needs, and obstacles encountered in developing therapies and establishing relationships between government, academia, and industry. National Institutes of Health panelists Preeti Hans (National Institute of Neurological Disorders and Stroke, Bethesda, Maryland) and Hung Tseng (National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland) discussed funding strategies. Industry panelist Thomas Sciaccia (Trevi Therapeutics, New Haven, Connecticut) discussed the challenges and roadblocks to drug development. Frank Liebel (Avon Products, Inc., New York, New York) discussed the relevance of itch and pleasure to compliance with product use. Possible applications of emerging knowledge to autism spectrum disorders and other conditions of the central nervous system were noted, along with potential instructiveness of the NIH-BRAIN initiative.

The confluence of investigators from diverse fields across academic, clinical, and industrial contexts at the symposium illuminated wide-ranging insights on the role of nerve fibers in the skin. The presentations of published and unpublished research set a foundation for discussing novel types of animal models that gave way to future therapeutic modalities. From examining immune cells implicated in neural hypersensitivity to genetic tools and spinal processes that mediate behavioral patterns, as well as in refining methods of quantitative sensory tests used for patients. With questions of mechanism and disease processes at hand, experimental and clinical inquiry further contributed to articulating neurophysiological frameworks, including gate control theory and pattern theory, that give shape to the skin as a sensory organ.

CONFlict OF interest

The authors state no conflict of interest.

ACKNOWLEDGMENTS

The authors would like to thank Diana Bautista, Ethan Lerner, Ellen A. Lumpkin, Clara Stemwedel, and Cheryl Stucky for assisting with the preparation of this manuscript. We gratefully acknowledge the Society for Investigative Dermatology Eugene M. Farber Travel Awards for Young Investigators, the Japanese Society for Investigative Dermatology Travel Award, and the National Psoriasis Foundation Travel Grants. The Montagna Symposium on the Biology of Skin is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases and the National Institute of Aging (R13 AR009431). Other 2016 supporters included Anacor Pharmaceuticals, Inc.; Galderma International; The Procter & Gamble Company; Amgen USA; Curtis T. Thompson, MD, & Associates LLC; David M. C. Ju Foundation; Johnson & Johnson Consumer, Inc.; National Psoriasis Foundation; Tioga Pharmaceuticals, Inc.; Nancy Durr and Norman Orentreich, MD; National Eczema Association; and the OHSU Knight Cancer Institute.

The Montagna Symposium on the Biology of Skin, directed by Molly F. Kulesz-Martin, PhD, is an annual nonprofit scientific meeting, inaugurated in 1950 by William Montagna, PhD, that gathers leading cutaneous biologists and dermatologists to discuss the latest findings, techniques, and goals in skin biology. Podcast interviews of speakers are available at http://www.jidonline.org/content/skinnpods, and blog posts from the meeting may be found at https://jidjottings.wordpress.com/category/jid-jottings/.