Experimental Laminin 332 Mucous Membrane Pemphigoid Critically Involves C5aR1 and Reflects Clinical and Immunopathological Characteristics of the Human Disease

Eva Nina Heppe¹,², Sabrina Tofern³,⁴, Franziska S. Schulze⁵, Akira Ishiko⁶, Atsushi Shimizu⁶, Christian Sina³, Dettlef Zillikens⁴, Jörg Köhl⁵,⁶, Stephanie Goletz¹ and Enno Schmidt¹,⁴

Mucous membrane pemphigoid is an autoantibody-mediated disease predominantly affecting the oral cavity, pharynx, and conjunctiva. Conjunctival lesions may lead to impaired vision and, finally, blindness. About 25% of mucous membrane pemphigoid patients generate autoantibodies against the α3 chain of laminin 332 (LAM332), a structural protein of epidermal/epithelial basement membranes. Here, we established a mouse model by the passive transfer of rabbit IgG against the murine homologs of two immunodominant fragments in adult C57BL/6 mice (mLAM332). After repeated subcutaneous injections of anti-mLAM332 IgG erosions and crusts occurred predominantly around the snout, eyes, and on ears. Conjunctival and oral/pharyngeal lesions with subepithelial splitting were found in 80% and 100% of mice, respectively. In contrast, disease development was abrogated in FcRγ chain-deficient mice and markedly reduced in C5aR1-deficient mice. Furthermore, wild-type mice injected with anti-mLAM332 F(ab′)2 were completely protected. Our findings suggest a crucial codominant role of FcRγ and complement activation of the anti-mLAM332 IgG-induced mouse model of mucous membrane pemphigoid. This model will help further discover the pathomechanisms of this devastating disease. Furthermore, it may be of use to explore the effect of urgently needed more specific anti-inflammatory mediators on mucosal and skin lesions in autoantibody-mediated diseases.

INTRODUCTION

Pemphigoid diseases are a heterogeneous group of prototypic autoantibody-mediated disorders (Schmidt and Zillikens, 2013). Common features are the high morbidity, the well-defined target antigens, and the lack of specific anti-inflammatory therapies. Mucous membrane pemphigoid (MMP) is the second most frequent subepidermal blistering disease, with an estimated incidence of about 1.3–2.0 per million per year in France and Germany and a prevalence of 24.6 per million in 2014 in Germany (Bernard et al., 1995; Bertram et al., 2009; Hübner et al., 2016).

MMP has been defined as a disease with autoantibodies against components of the dermal-epidermal junction (DEJ) and predominant mucosal involvement (Chan et al., 2002). In particular, conjunctival lesions are associated with an enormous health burden since scar formation induces visual impairment and, finally, blindness (Higgins et al., 2006). About 75% of MMP patients generate autoantibodies against BP180 (type XVII collagen) (Bernard et al., 1992; Oyama et al., 2006; Schmidt et al., 2001). In 20–25% of patients, autoantibodies target laminin 332, formerly termed laminin 5 and epiligrin (Bernard et al., 2013; Domloge-Hultsch et al., 1992; Leverkus et al., 1999; Schmidt et al., 2001). In less than 5% of MMP patients, reactivity against α6 integrin, β4 integrin, and type VII collagen has been described (Schmidt and Zillikens, 2013).

Anti-laminin 332 MMP may be associated with a solid malignancy in about 30% of patients (Egan et al., 2001; Leverkus et al., 1999), with more extensive disease (Bernard et al., 2013), and with a higher frequency of oral mucosa and skin involvement (Amber et al., 2016).

Laminin 332 is composed of the α3 (LAM332), β3, and γ2 chain encoded by three different genes, LAMA3, LAMB3, and...
In most patients with anti-laminin 332 MMP, autoantibodies recognize the α3 chain of laminin 332 (Kirtschig et al., 1995; Lazarova et al., 2001). Laminin 332 is central for hemidesmosome formation and interacts with BP180, type VII collagen, and α6β4 integrin (Borradori and Sonnenberg, 1999; Hamill et al., 2010). Its pivotal role in the integrity of basement membranes is reflected by mutations in one of the three genes resulting in junctional epidermolysis bullosa and by autoantibody binding leading to anti-laminin 332 MMP (Domloge-Hultsch et al., 1992; Fine et al., 2014).

Here, we describe a mouse model of anti-laminin 332 MMP that is based on the passive transfer of antibodies against murine LAMα3 (mLAMα3) in adult C57BL/6 mice. This model reflects major clinical and immunopathological characteristics of the human disease, that is, (i) severe oral and pharyngeal lesions, (ii) conjunctival involvement, (iii) linear deposits of IgG and C3 at the DEJ, (iv) subepidermal split formation with a dense inflammatory infiltrate below the DEJ by histopathology, and (v) splitting in the lower lamina lucida by electron microscopy.

RESULTS AND DISCUSSION

Different animal models have been developed that reflect major clinical and immunopathological characteristics of the human diseases bullous pemphigoid (BP) (Liu et al., 1993; Nishie et al., 2007; Schulze et al., 2014; Yamamoto et al., 2002) and epidermolysis bullosa acquisita (EBA).
Anti-mLAM of human LAM identified two immunodominant regions at the N- and C-terminus. Repeated injections of anti-mLAM of recombinant mLAM3 (detailed in the Supplementary Materials online) in adult C57BL/6 mice resulted in severe oral and pharyngeal blisters and erosions as seen by endscopy leading to considerable weight loss (Figure 1c, 1e, 1f, and 1m). In addition, split formation developed on the conjunctiva and esophagus and periorbital hair loss, were reported after regional injection of rabbit anti-laminin 332 IgG (see Supplementary Figure S4j). Here, by epitope mapping of laminin 332 using sera of anti-laminin 332 MMP patients (n = 20) and various recombinant forms covering the entire human LAMz3, we initially identified two immunodominant regions at the N- and C-terminus of human LAMz3 (detailed in the Supplementary Materials online, Supplementary Figure S1). LAMz3 is targeted by most patients with anti-laminin 332 MMP, and the C-terminal region has previously been reported as its immunodominant target in anti-laminin 332 MMP (Kirtschig et al., 1995; Lazarova et al., 2001). Subsequently, we generated rabbit IgG against the recombinant murine homologs of the two immunodominant human LAMz3 fragments (n = 20) and various recombinant forms covering the entire human LAMz3. Anti-mLAMz3 IgG recognized the recombinant mLAMz3 fragments by immunoblotting, bound along the dermal side of murine salt-split skin by indirect immunofluorescence microscopy, and labelled the interface of the lower lamina lucida and the upper portion of the lamina densa by indirect immunogold electron microscopy, as known for autoantibodies in patients with anti-laminin 332 MMP (see Supplementary Figure S2c–e) (Domloge-Hultsch et al., 1994; Domloge-Hultsch et al., 1992; Hsu et al., 1997; Kirtschig et al., 1995).

**Characterization of anti-mLAMz3 IgG**

Here, by epitope mapping of laminin 332 using sera of anti-laminin 332 MMP patients (n = 20) and various recombinant forms covering the entire human LAMz3, we initially identified two immunodominant regions at the N- and C-terminus of human LAMz3 (detailed in the Supplementary Materials online, Supplementary Figure S1). LAMz3 is targeted by most patients with anti-laminin 332 MMP, and the C-terminal region has previously been reported as its immunodominant target in anti-laminin 332 MMP (Kirtschig et al., 1995; Lazarova et al., 2001). Subsequently, we generated rabbit IgG against the recombinant murine homologs of the two immunodominant human LAMz3 fragments (n = 20) and various recombinant forms covering the entire human LAMz3. Anti-mLAMz3 IgG recognized the recombinant mLAMz3 fragments by immunoblotting, bound along the dermal side of murine salt-split skin by indirect immunofluorescence microscopy, and labelled the interface of the lower lamina lucida and the upper portion of the lamina densa by indirect immunogold electron microscopy, as known for autoantibodies in patients with anti-laminin 332 MMP (see Supplementary Figure S2c–e) (Domloge-Hultsch et al., 1994; Domloge-Hultsch et al., 1992; Hsu et al., 1997; Kirtschig et al., 1995).

**Transfer of anti-mLAMz3 IgG induces MMP-like clinical lesions in adult mice**

Repeated injections of anti-mLAMz3 IgG in adult C57BL/6 mice resulted in severe oral and pharyngeal blisters and erosions as seen by endoscopy leading to considerable weight loss (Figure 1c, 1e, 1f, and 1m). In addition, split formation developed on the conjunctiva and esophagus and periorbital hair loss, were reported after regional injection of rabbit anti-laminin 332 IgG (see Supplementary Figure S4j). Here, by epitope mapping of laminin 332 using sera of anti-laminin 332 MMP patients (n = 20) and various recombinant forms covering the entire human LAMz3, we initially identified two immunodominant regions at the N- and C-terminus of human LAMz3 (detailed in the Supplementary Materials online, Supplementary Figure S1). LAMz3 is targeted by most patients with anti-laminin 332 MMP, and the C-terminal region has previously been reported as its immunodominant target in anti-laminin 332 MMP (Kirtschig et al., 1995; Lazarova et al., 2001).

In human anti-laminin 332 MMP, oral involvement is present in almost all patients and ocular and skin lesions in about half of patients (Amber et al., 2016). The clinical presentation of the anti-laminin 332 mouse model established here clearly differs from the previously described mouse model, in which neonatal BALB/c mice developed subepithelial lesions of skin and nasal and oral mucosa 24–48 hours after the injection of rabbit IgG generated against human laminin 332 (Lazarova et al., 1996). In this model, no conjunctival lesions were reported and no inflammation was seen by lesional histopathology, which is in sharp contrast to the great majority of MMP patients. In contrast, subepithelial blisters on conjunctiva and cornea, as well as eyelid changes and periorbital hair loss, were reported after regional injection of rabbit anti-laminin 332 IgG in adult BALB/c mice (Lazarova et al., 2007).

In addition, in previously described models of EBA and BP, no conjunctival lesions were observed, and oral lesions were mild or absent (Ishii et al., 2011; Liu et al., 1993; Nishie et al., 2007; Schulze et al., 2014; Sitaru et al., 2005, 2006; Woodley et al., 2005). The clinical differences in the latter...
Supplementary Figure S3 online).

In human anti-laminin 332 MMP, histopathology findings are variable. However, most patients suffer from a moderate to dense inflammatory infiltrate predominantly composed of lymphocytes and neutrophils. In some patients, eosinophils and plasma cells can also be found (Egan and Yancey, 2000; Rose et al., 2009). Few patients with only a scant infiltrate were also described. The only study that systematically investigated the histopathology of anti-laminin 332 MMP patients concluded that this entity cannot be differentiated from other pemphigoid diseases such as BP, EBA, and anti-p200 pemphigoid based on histopathology (Rose et al., 2009).

The histopathological findings in the present model are in contrast to findings in the previously reported mouse model of anti-laminin 332 pemphigoid (Lazarova et al., 1996, 1999a, 1999b; Lazarova et al., 1996). The subepidermal splitting devoid of any inflammation was observed with IgG from anti-laminin 332 MMP patients injected in human skin grafted onto the back of SCID mice IgG antibodies and with Fab fragments of rabbit anti-human laminin 332 IgG injected in neonatal BALB/c mice (Lazarova et al., 2000a, 2000b).

IgG against both the middle and C-terminal regions of anti-mLAM3 is pathogenic

Repeated injections of IgG affinity purified against the C-terminal and middle portions of mLAM3, resulted in similar disease activities (see Supplementary Figure S7 online). No differences in the extent of skin, oral, and conjunctival lesions were noted (see Supplementary Figure S7a–e). In line, deposits of IgG and C3 at the DEJ were not significantly different (Figure S7g–i). These data indicate that pathogenic
epitopes are not restricted to a specific region of mLAM. In contrast, other target antigens in pemphigoid diseases such as BP180 (type XVII collagen) in BP and type VII collagen in EBA harbor well-defined immunodominant regions that mediate the pathogenic effect of autoantibodies (Izumi et al., 2016; Liu et al., 1995a; Nishie et al., 2007; Schmidt et al., 2000; Sitaru et al., 2002b). This notion is supported by the described finding that most anti-laminin 332 MMP patient sera recognize multiple epitopes on LAM3. Further studies are needed to explore the pathogenic potential of antibodies against mLAM3 and mLAM2.

**The laminin 332 MMP model is FcRγ dependent**

The striking difference between previous models and the model described here is also reflected by its FcRγ dependence. The effect of anti-mLAM3 IgG to induce subepidermal splitting in cryosections of murine skin depended on the addition of leukocytes from healthy volunteers and was abandoned when the subsequent incubation of skin sections with leukocytes was omitted (Figure 3a–f). In this model, subepidermal splitting induced by anti-type VII collagen IgG in EBA has previously been shown to be mediated by the release of reactive oxygen species and matrix metalloproteinase 9 released from leukocytes that had bound along the DEJ (Shimanovich et al., 2004; Sitaru et al., 2002a).

Further, the strong correlation of the myeloperoxidase activity in the ear skin of diseased mice with the extent of skin lesions measured at day 12 ($R^2 = 0.800, P < 0.001$) also suggests a pathogenic relevance of neutrophils in the anti-mLAM3 IgG-mediated tissue destruction (see Supplementary Figure S8 online). Third, and most important, FcRγ chain-deficient mice injected with anti-mLAM3 IgG did not develop clinical disease, whereas strong labeling of IgG was observed along the DEJ of skin and mucosal biopsy samples (Figure 4). Fourth, subcutaneous injection of F(ab')2 fragments of anti-mLAM3 IgG in the ears of C57BL/6 mice did not result in subepidermal splitting. An inflammatory dermal infiltrate and skin lesions were absent, and staining at the DEJ was as strong as after injection of anti-mLAM3 IgG (Figure 4).

**C5aR1 is critically involved in the pathophysiology of experimental murine laminin 332 MMP**

Because strong deposits of C3 and C5 were present along the basal membrane zone of perilesional biopsy samples of skin and various mucosal tissues (Figure 1i, 1l, 1o, and Supplementary Figure S4; data for C5 not shown), we finally aimed at exploring the pathophysiological relevance of complement activation in this mouse model.

C5a is the most downstream product of the complement cascade activated by all three complement pathways and is a very powerful chemoattractant that guides neutrophils, monocytes, and macrophages toward sites of complement activation (Ricklin et al., 2010; Zhang et al., 2010). C5a can bind to its two receptors C5aR1 and C5aR2 (previously termed C5L2). Although C5aR1 triggers proinflammatory signals, C5aR2 has more regulatory functions and may act as a decoy receptor (Ricklin et al., 2010; Zhang et al., 2010). We therefore decided to investigate the role of the key proinflammatory C5aR1 in the pathophysiology of our anti-laminin 332 MMP model. C5aR1-deficient mice showed a significantly reduced disease activity (Figure 5). In C5aR1-deficient compared with wild-type mice, the affected body surface area was 74% lower ($P < 0.001$) (Figure 5b), the body weight score 96% lower (Figure 5c), the conjunctival involvement 88% lower ($P < 0.0001$) (Figure 5d), and the cumulative disease score 90% lower ($P < 0.001$; Figure 5e). Of note, microscopic subepidermal blisters and a neutrophil-rich inflammatory infiltrate, although less dense compared with those of wild-type animals, was observed in six of eight C5aR1-deficient mice (Figure 5g). These data are in line with the strong role of C5aR1 in experimental models of other pemphigoid diseases, BP and EBA (Heimbach et al., 2011; Karsten et al., 2012; Liu et al., 1995b).

The importance of the FcRγ and, to a lesser extent, C5aR1 in the mouse model established here is in accordance with the observed dense inflammatory infiltrate that may be attracted via these receptors. In contrast, previous experiments with neonatal C5-deficient DBA/2NCr mice subjected to anti-human laminin 332 IgG resulted in the same disease activity and the same extent of noninflammatory subepidermal blisters compared with wild-type mice (Lazarova et al., 1996). Although the presence of conjunctival lesions and a dense inflammatory infiltrate in the present model closely reflect the human situation, the use of IgG against mLAM3 and adult mice (instead of IgG against all subunits of human laminin 332 and neonatal mice) may explain the clinical and immunopathological differences between the two animal models of anti-laminin 332 MMP.

In summary, anti-laminin 332 MMP is a prototypic organ-specific autoantibody-mediated disease. The mouse model described here mirrors major clinical and immunopathological features of the human disease, that is, oral, pharyngeal, esophageal, and conjunctival lesions; subepidermal blistering with an inflammatory infiltrate below the basement membrane zone; and deposits of IgG, C3, and C5 along the basement membrane zone. The anti-laminin 332 MMP mouse model will be helpful to further dissect the pathophysiology of this disorder and explore the effect of more specific anti-inflammatory mediators on mucosal and skin lesions.

**MATERIALS AND METHODS**

**Mice**

C57BL/6, FcRγ−/− (B6;129P2-Fcer1g<sup>tm1Rav/J</sup>), and C5aR1<sup>−/−</sup> on C57BL/6 background were bred and housed in a 12-hour light-dark cycle at the animal facility of the University of Lübeck. All experiments were performed on mice anesthetized by intraperitoneal administration of a mixture of ketamine (100 µg/g) and xylazine (15 µg/g). Animal experiments were approved by the Animal Care and Use Committee of Schleswig-Holstein (95-7/13, 40-3/15).

**Epitope mapping of human LAM3**

Epitope mapping of human LAM33 is discussed in the Supplementary Materials (see Supplementary Figure S1, Supplementary Table S1 online).

**Expression and purification of murine LAM33 fragments**

Two fragments of the mLAM3 (accession number NM_010680.1), middle (1,002 base pairs, aa1656-1985) and C-terminal (1,740 base pairs, aa2756-3330) portions, were generated and optimized for
Figure 4. FcRγ are essential in anti-mLAMz3 IgG-mediated tissue destruction. (a) Mice lacking the activating γ chain of the FcR (FcRγ−/−) are completely protected from the pathogenic effect of anti-mLAMz3 IgG. FcRγ−/− (n = 8) and matched wild-type mice were injected with 5 mg mLAMz3 IgG (n = 5) and
expression in Escherichia coli (Thermo Fisher, Darmstadt Germany). Middle and C-terminal mLAM32 were each cloned into expression vector pRSET_A_A185. Both fragments were expressed as His-fusion proteins in E. coli and purified by metal affinity chromatography on TALON superfowl (Clontech, Palo Alto, CA). Protein concentrations were measured with Coomassie Brilliant Blue stained SDS-PAGE, using bovine serum albumin as the protein standard.

**Rabbit IgG**

New Zealand white rabbits were immunized with a mixture of recombinant His-tagged fragments middle and C-terminal mLAM32 portions. Total rabbit IgG was purified by affinity chromatography using protein G Sepharose (Genscript, Piscataway, NJ). Antigen-specific IgG was purified using the recombinant fragments coupled to NHS-activated Sepharose (GE Healthcare, Munich, Germany).

Anti-mLAM32 F(ab')2 fragments were generated by pepsin digestion (Thermo Scientific, Rockford, IL) according to the manufacturer’s instructions and isolated by affinity chromatography using protein G Sepharose. IgG fragments were screened by SDS-PAGE under reduced and nonreduced conditions. F(ab')2-fragments from normal rabbit IgG were prepared similarly. Normal rabbit serum was obtained from PAN-Biotech (Aidenbach, Germany). The recombinant forms of mLAM32, mid and c-term, were applied to affinity-purify mid-specific and c-term-specific IgG from anti-mLAM32 rabbit serum detailed in the Supplementary Materials.

**Cryosection assay**

The leukocyte-activating capacity of anti-mLAM32 serum was evaluated ex vivo on cryosections of murine skin, as reported previously (see Supplementary Materials) (Sitaru et al., 2002b).

**Immunoblotting**

Immunoblotting was performed as previously described (see Supplementary Materials) (Schulze et al., 2014; Vafia et al., 2012).

**Antibody transfer mouse model**

Purified rabbit anti-mLAM32 IgG or normal rabbit IgG was repetitively injected subcutaneously into the neck of mice every second day for 12 days (Figures 4a, 5a). IgG doses ranged between 1.0 and 7.5 mg/injection and are specified for each experiment in the respective figure legends. Anti-mid and anti-c-term mLAM32 IgG was injected accordingly in doses with equal anti-DEJ titers of 0.5 (mid) and 1 mg/injection (c-term). On day 12, mice were killed, and samples were taken for further analysis unless stated otherwise. The scoring is detailed in the Supplementary Materials.

In the local antibody transfer model, 500 µg of IgG or 400 µg of F(ab')2-fragments (a roughly equimolar dose compared with the intact IgG injections), were injected subcutaneously into the ear of mice. 48 hours after injection the percentage of affected ear skin was scored, and ear samples were taken for further analysis.

**Endoscopy**

High-resolution mouse endoscopy of the oral cavity was used (HOPKINS Optik 640198A; Karl StorzAidaVet, Tuttingen, Germany) to determine the extent of oral lesions.

**Immunofluorescence microscopy and histopathology**

Direct and indirect immunofluorescence microscopy and hematoxylin and eosin staining were performed according to standard protocols described previously (see Supplementary Materials) (Schulze et al., 2014; Vafia et al., 2012).

For immunostaining of infiltrating cells, cryosections of murine skin biopsy samples were blocked with 3% bovine serum albumin in Tris-buffered saline. All following washing steps were performed three times for 5 minutes in phosphate buffered saline-Tween (0.05% Tween). For staining of neutrophils, biotin anti-mouse ly-6G antibody (clone 1A8) with rat IgG 2ak (clone RTK2758) as isotype control (1:400; Biolegend, Fell, Germany) were used. T cells were stained with biotin anti-mouse CD3e antibody (clone 145-2C11) and biotin Armenian hamster IgG isotype control antibody (clone HTK888; 1:100; Biolegend). For the visualization of macrophages/monocytes, anti-mouse F4/80 antibody (Clone A3-1; 1:700; Bio-Rad) and isotype IgG2b (Clone R12-3; 1:700; BD Pharmingen, Heidelberg, Germany) were used with biotin goat anti-rat IgG (1:800; Biolegend) as the secondary antibody. As a detection agent, Daylight 594-conjugated streptavidin (1:200; Thermo Fisher) was applied. Additional DAPI staining was performed for all sections. Specimens were mounted in Fluoromount-G (Southern Biotech, Birmingham, AL) and kept at −20°C. Cell numbers were determined by counting the specific cells in relation to DAPI-positive cells in three visual fields with a field size of 115 µm².

**Electron microscopy**

Indirect immunogold electron microscopy was performed to characterize the exact binding site of rabbit anti-mLAM32 serum in normal murine skin as previously described (Ishiko et al., 1993). Samples for transmission electron microscopy were taken from lesional skin of mice injected with anti-mLAM32 IgG. Fixed samples were processed as described (Ishiko and Shimizu, 2001). Stained
sections were examined using an electron microscope (Model JEOLJEM-1230; JEOL, Tokyo, Japan).

**Neutrophil-specific myeloperoxidase activity**

Neutrophil infiltration in murine skin was quantified by determination of myeloperoxidase activity in homogenized ear specimens as described (Hammers et al., 2011). Myeloperoxidase content was expressed as units of MPO activity per milligram of protein. Protein concentration was assessed using BCA assay (Thermo Scientific, Rockford, IL).

**Statistics**

Differences in disease severity were determined by t test, one-way analysis of variance, or two-way analysis of variance. For

---

**Figure 5.** C5aR1<sup>−/−</sup> mice injected with anti-mLAM<sub>3</sub> IgG showed reduced disease activity. (a) C5aR1<sup>−/−</sup> (n = 8) and wild-type mice (C57BL/6, n = 8) were injected subcutaneously with 4 mg/mouse mLAM<sub>3</sub> IgG on days 0, 2, 4, 6, 8, and 10. (a, b) In C5aR1<sup>−/−</sup> mice, the affected body surface area was significantly smaller compared with wild-type mice both (a) during the course of the disease (two-way analysis of variance) and (b) at the end of the experiment on day 12 (t test). (c–e) When the disease course during the entire experiment was analyzed, C5aR1<sup>−/−</sup> mice also showed (c) a significantly reduced body weight score, (d) conjunctival involvement, and (e) cumulative disease score (all area under the curve; all t test). Bars show (a) mean standard deviation and (b–e) mean ± standard deviation. **P < 0.001; ***P < 0.0001. (f, g) Hematoxylin and eosin staining of (f) lesional ear skin of wild-type and (g) C5aR1<sup>−/−</sup> mice. Although subepidermal splitting (arrowheads) was more pronounced and the inflammatory dermal infiltrate denser in the wild-type mice, C5aR1<sup>−/−</sup> mice also showed clear subepidermal splitting and infiltration of neutrophils and macrophages in the upper dermis. Scale bars = 50 μm. mLAM<sub>3</sub>, murine 23 chain of laminin 332; n.s., not significant.
correlation analysis Pearson product moment correlation was applied. Data are presented as mean ± standard deviation. A P-value less than 0.05 was considered statistically significant.

CONFLICT OF INTEREST
The authors state no conflict of interest.

ACKNOWLEDGMENTS
We are grateful to Vanessa Knoll, Lübeck, for excellent technical support. The study was supported by Deutsche Forschungsgemeinschaft through the Research Training Group 1727 Modulation of Autoimmunity (to ES), the Clinical Research Unit 303 Pemphigoid Diseases (to ES, SCHM 1686/7-1), and the Schleswig-Holstein Cluster of Excellence Inflammation at Interfaces (EXC 306/2) and the University of Lübeck (to FSS).

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at www.jidonline.org, and at http://dx.doi.org/10.1016/j.jid.2017.03.037.

REFERENCES


Domloge-Hultsch N, Gammon WR, Bridgman RA, Gil SG, Carter WG, Yancey KB. Epiligrin, the major human keratinocyte integrin ligand, is a target in both an acquired autoimmune and an inherited subepidermal blistering skin disease. J Clin Invest 1992;90:1628–33.


Ishiko A, Shimizu H, Kukuchi A, Ebihara T, Hashimoto T, Nishikawa T. Human autoantibodies against the 230-kD bullous pemphigoid antigen (BPAG1) bind only to the intracellular domain of the hemidesmosome, whereas those against the 180-kD bullous pemphigoid antigen (BPAG2) bind along the plasma membrane of the hemidesmosome in normal human and swine skin. J Clin Invest 1993;91:1608–15.


