Eosinophils Mediate Tissue Injury in the Autoimmune Skin Disease Bullous Pemphigoid

Lan Lin1,2,9, Bin-Jin Hwang1,9, Donna A. Culton1, Ning Li1, Susan Burette1, Beverly H. Koller3, Kelly A. Messingham4, Janet A. Fairley4, James J. Lee5,1, Russell P. Hall6, Lijia An2, Luis A. Diaz1 and Zhi Liu1,7,8

Eosinophils are typically associated with unique inflammatory settings, including allergic inflammation and helminth infections. However, new information suggests that eosinophils contribute more broadly to inflammatory responses and participate in local immune regulation and the tissue remodeling/repair events linked with a variety of diseases. Eosinophilic infiltration has long been a histologic hallmark of bullous pemphigoid (BP), a subepidermal autoimmune blistering disease characterized by autoantibodies directed against basement membrane protein BP180. However, the exact role of eosinophils in disease pathogenesis remains largely unknown. We show here that eosinophils are necessary for IgE autoantibody-mediated BP blister formation in a humanized IgE receptor mouse model of BP. Disease severity is IgE dose dependent and correlates with the degree of eosinophil infiltration in the skin. Furthermore, IgE autoantibodies fail to induce BP in eosinophil-deficient mice, confirming that eosinophils are required for IgE-mediated tissue injury. Thus, eosinophils provide the cellular link between IgE autoantibodies and skin blistering in this murine model of BP. These findings suggest a role for eosinophils in autoimmune disease and have important implications for the treatment of BP and other antibody-mediated inflammatory and autoimmune diseases.

INTRODUCTION

Eosinophil-mediated activities have generally been known to contribute to specific disease pathologies, most notably allergic conditions and parasitic infections (Liao et al., 2016; Rosenberg et al., 2013). However, the scope of eosinophil effector functions is expanding beyond these simple links with asthma and parasitic defense and now includes roles in local immune regulation and tissue remodelling and repair (Jacobsen et al., 2012; Lee et al., 2010). In this way, eosinophils represent an important cellular link between the innate and adaptive immune responses and have been shown to have more broad roles in diverse diseases such as inflammatory bowel disease, muscular dystrophy, and cancer, among others (Jacobsen et al., 2012). In cutaneous disease, peripheral eosinophilia and eosinophil infiltration of the skin are hallmarks of hypersensitivity reactions, allergic conditions, and some autoimmune blistering skin disorders, suggesting a role for eosinophils in the pathogenesis of these diseases as well (Long et al., 2016).

Bullous pemphigoid (BP) is the most common antibody-mediated autoimmune blistering disease of the skin. Clinically, the disease is characterized by tense bullae and urticarial type plaques. Histologically, lesions of BP show subepidermal cleaving and a significant dermal infiltration of eosinophils and neutrophils (Lever, 1965). Peripheral eosinophilia is also a common finding present in over 50% of untreated patients (Bernard et al., 1987; Bushkell and Jordon, 1983; van Beek et al., 2016). Direct immunofluorescence studies typically show IgG and complement deposition along the basement membrane zone (dermal-epidermal junction) (Jordon et al., 1975a, 1975b); however, some patients show IgE deposition at the basement membrane zone (BMZ) as well (Provost and Tomasi, 1974; Yayli et al., 2011). Circulating IgE directed against the BMZ has also been detected by indirect immunofluorescence (Parodi and Rebora, 1992; Soh et al., 1993).

It has been well documented that BP is mediated by autoantibodies that recognize BMZ protein BP180 (also termed type XVII collagen), a transmembrane glycoprotein that is located in the hemidesmosome and is critical for adhesion of...
the basal keratinocytes to the dermis (Diaz et al., 1990; Giudice et al., 1992; Nishizawa et al., 1993). The non-collagenous 16A (hNC16A) region of the BP180 ectodomain contains the major pathogenic epitopes recognized by autoantibodies from BP sera (Dresow et al., 2009; Giudice et al., 1993; Zillikens et al., 1997). Because the hNC16A domain is poorly conserved between humans and mice, the development of humanized hNC16A mice has allowed for a more precise understanding of how autoantibodies from BP patients induce disease in vivo (Liu et al., 1993, 2008). Passive transfer of BP IgG induces complement fixation, neutrophil infiltration, and blister formation in hNC16A mice, but not wild-type mice, confirming the importance of the hNC16A domain in pathogenicity of disease (Liu et al., 2008; Nishie et al., 2007). Most animal studies have focused on the pathogenicity of BP IgG autoantibodies and the role of neutrophil-mediated tissue damage in BP pathogenesis but have not shown the classic eosinophil infiltration so commonly seen in BP patients. Thus, the role of eosinophils in disease remains poorly understood.

Several recent studies suggest a potential pathogenic role for IgE autoantibodies and a possible link between these IgE autoantibodies and eosinophil infiltrate seen histologically in BP (Fairley et al., 2007; Zone et al., 2007). Passive transfer of BP IgE to human skin grafted onto athymic, nude mice resulted in tissue infiltration of neutrophils, eosinophils, and mast cells, as well as a histologic subepidermal split. These studies have revealed that eosinophils may be involved in disease pathogenesis and are potentially related to IgG autoantibodies.

The goal of this study was to investigate the role of eosinophils and IgE autoantibodies in BP pathogenesis and the connection between them. We provide clear evidence that anti-hNC16A IgE purified from BP sera are pathogenic in hNC16A mice in an eosinophil-dependent manner. Thus, eosinophils represent the cellular link between IgE autoantibodies and BP blister formation. These findings firmly establish a role for eosinophils in human autoimmune disease and provide an animal model to further dissect specific eosinophil mediators of tissue injury and test new therapies.

RESULTS

Anti-hNC16A IgE binds to hNC16A of BP180 but does not induce BP in neonatal hNC16A mice

Like purified anti-hNC16A IgG, purified anti-hNC16A IgE, but not control IgE, recognized recombinant hNC16A by immunoblotting (Figure 1a, lane 2) and stained the BMZ of hNC16A mouse skin sections by indirect immunofluorescence (Figure 1b). To determine whether anti-hNC16A IgE is able to bind hNC16A in vivo and trigger skin disease, anti-hNC16A IgE at a pathologically relevant dose (100 ng/g body weight) was injected intradermally into neonatal hNC16A mice. Although mice injected with anti-hNC16A IgG developed blister formation both clinically and histologically with IgG deposition at the BMZ (Figure 1c), those injected with anti-hNC16A IgE showed IgE deposition at the BMZ but did not develop blisters (Figure 1c). Immunostaining identified infiltrating neutrophils only in the skin of anti-hNC16A IgG–injected mice (Figure 1d) and no infiltrating eosinophils in the skin of mice injected with either anti-hNC16A IgG or IgE (Figure 1d).

Anti-hNC16A IgE induces eosinophil infiltration but does not induce BP in adult hNC16A mice

Although the classic experimental animal model for the study of BP involves passive transfer to neonatal hNC16A mice, it is possible that eosinophil migration differs between neonatal and adult mice. Thus, adult hNC16A mice were injected with anti-hNC16A IgG and IgE intradermally in the ear pinna and examined for infiltration of eosinophils and neutrophils and subepidermal blistering at 0–48 hours after injection. Anti-hNC16A IgG induced a similar degree of neutrophil infiltration in neonatal and adult mice (Figure 2a) but did not induce eosinophil infiltration in either adult or neonatal mice (Figure 2c). Anti-hNC16A IgE induced typical dermal-epidermal junction separation in adult hNC16A mice (Figure 2e), similar to the neonatal mouse model. As expected, passive transfer of anti-hNC16A IgE did not induce neutrophil or eosinophil infiltration in neonatal mice (Figure 2b and d). In adult hNC16A mice, anti-hNC16A IgE induced a low but statistically significant increase in neutrophil infiltration at the 24- and 48-hour postinjection time points (Figure 2b). However, anti-hNC16A IgE induced markedly increased eosinophil infiltration in adult hNC16A mice at the 24-hour postinjection time point and even more significantly at the 48-hour time point (Figure 2d). ELISA assay showed that NC16A-specific IgE level was 907 index units in the injected hNC16A mice. Despite anti-hNC16A IgE–induced eosinophil infiltration in the tissue of adult hNC16A mice, no clinical or histologic evidence of blister formation was detected (Figure 2f).

Anti-hNC16A IgE induces BP in adult double-humanized hFcεRI/hNC16A mice

Anti-hNC16A IgE triggers eosinophil infiltration yet fails to induce subepidermal blistering in hNC16A adult mice. Therefore, we hypothesized that the human high-affinity IgE receptor FcεRI on eosinophils is required for pathogenicity of anti-hNC16A IgE in hNC16A mice. To address this issue, we generated humanized hFcεRI mice, in which the mouse FcεRIα locus was replaced with the syntenic human FCER1A locus driven under its own promoter elements (Figure 3a). The hFcεRI mice were then crossed with hNC16A mice to generate a double-humanized hFcεRI/hNC16A strain. Eosinophils from hFcεRI/hNC16A mice expressed hFcεRI by flow cytometry (Figure 3b) and indirect immunofluorescence (Figure 3c) and remained functional. Their ability to undergo oxidative burst as measured by
superoxide production in response to phorbol 12-myristate 13-acetate stimulation (Figure 3d) and to degranulate, as measured by EPO release in response to platelet-activating factor stimulation (Figure 3e), was comparable to eosinophils from hNC16A mice. Similarly, human eosinophils show the same degree of degranulation as hFcεRI/hNC16A eosinophils in response to platelet-activating factor stimulation (Figure 3f). More importantly, passive transfer of anti-hNC16A IgE into the ear pinna of adult hFcεRI/hNC16A mice induced a subepidermal split (Figure 4a) accompanied by IgE deposition at the BMZ by direct immunofluorescence (Figure 4a) and infiltration of eosinophils by immunostaining with anti-mouse major basic protein antibody (Figure 4a). ELISA assay showed that NC16A-specific IgE level was 712 index units in the injected hNC16A mice. Skin disease activity (Figure 4b) and dermal infiltration of eosinophils as measured by EPO activity assay (Figure 4c) were significantly higher in hFcεRI/hNC16A mice that received anti-hNC16A IgE compared with control IgE. MPO activity assay showed an elevated dermal infiltration of neutrophils in hFcεRI/hNC16A mice that received anti-hNC16A IgE compared with control IgE (Figure 4d), which was similar to anti-hNC16A IgE–injected adult hNC16A mice (Figure 2b) but much lower than that seen in

Figure 1. Anti-hNC16A IgE does not induce BP in neonatal hNC16A mice. Anti-hNC16A IgE (a) recognized recombinant hNC16A by immunoblotting (lane 2), (b) stained the BMZ of hNC16A mouse skin sections by indirect immunofluorescence, but (c) failed to induce BP clinically and histologically in neonatal hNC16A mice at 48 hours after intradermal injection. Arrow indicates BMZ. (d) Immunostaining identified only neutrophils (PMN) in anti-hNC16A IgE–injected mouse skin, but no eosinophils were present in the skin of all anti-hNC16A antibody–injected mice. MPO and EPO enzymatic assays showed (e) significantly increased PMN in the anti-NC16A IgG–injected skin but (f) no eosinophil infiltration in the anti-NC16A IgG– and IgE–injected skin 48 hours after injection. Scale bars = 50 μm for panel b; scale bars = 100 μm for panels c and d. *P < 0.05, n = 6. BMZ, basement membrane zone; BP, bullous pemphigoid; D, dermis; E, epidermis; Eos, eosinophils; EPO, eosinophil peroxidase; MPO, myeloperoxidase; OD, optical density; V, vesicle.

"L Lin et al. Eosinophils in Bullous Pemphigoid"
anti-hNC16A IgG–injected hNC16A mice (Figure 2a). These results suggest that anti-hNC16A IgG–induced BP in adult hFcεRI/hNC16A mice requires hFcεRI-expressing eosinophils.

We further confirm that hFcεRI is required in anti-NC16A IgG–induced BP in hFcεRI/hNC16A mice by treating the mice with hFcεRI-neutralizing antibody. hFcεRI blockade significantly reduced BP disease activity triggered by pathogenic anti-NC16A IgG accompanied with reduced eosinophil infiltration (Figure 4e and f).

Anti-hNC16A IgE–induced BP in hFcεRI/hNC16A mice is independent of neutrophils

Anti-hNC16A IgE induced predominant eosinophil infiltration with a small but significant increase in neutrophil infiltration in hFcεRI/hNC16A mice. To rule out the possibility that this small amount of neutrophil infiltration was contributing to anti-hNC16A IgE–induced disease, adult hFcεRI/hNC16A mice were pretreated with neutrophil-depleting antibody or isotype control followed by ear pinna injection of anti-hNC16A IgE. At 48 hours after IgE transfer, hFcεRI/hNC16A
mice pretreated with neutrophil-depleting antibody developed similar subepidermal split (see Supplementary Figure S1a online) and disease activity to those pretreated with isotype control antibody or mice that were not pretreated (see Supplementary Figure S1b). These results show that eosinophils and not neutrophils are required for anti-hNC16A IgE-induced BP in hFcεRI/hNC16A mice.

Disease severity of anti-hNC16A IgE–induced BP in adult hFcεRI/hNC16A mice is dose dependent and correlates with the degree of eosinophil infiltration

If anti-hNC16A IgE are pathogenic, BP disease activity should correlate to anti-hNC16A IgE levels. To address this hypothesis, adult hFcεRI/hNC16A mice were treated with different doses of anti-hNC16A IgE injected into the ear pinna. As expected, there was a direct correlation between disease severity (disease score) and anti-hNC16A IgE dose (Figure 5a). Furthermore, eosinophil infiltration also correlated with higher anti-hNC16A IgE dose (Figure 5b). These results suggest that anti-hNC16A IgE–mediated disease pathogenesis is directly related to levels of anti-hNC16A IgE and eosinophil infiltration.

Anti-hNC16A IgE fails to induce BP in eosinophil-deficient mice

To further confirm our hypothesis that anti-hNC16A IgE–induced BP is directly dependent on infiltrating eosinophils,
adult eosinophil-deficient hFceRI/hNC16A mice were injected with anti-hNC16A IgE or control IgE and examined 48 hours post-IgE injection. Although both eosinophil-sufficient hFceRI/hNC16A mice and eosinophil-deficient hFceRI/hNC16A mice (i.e., ΔdblGATA/hFceRI/hNC16A) showed IgE deposition at the BMZ after passive transfer (Figure 5c), only eosinophil-sufficient hFceRI/hNC16A mice showed subepidermal clefting after passive transfer of anti-hNC16A IgE.
Thus confirming that eosinophils are required for anti-hNC16A IgE–mediated pathogenesis. As expected, infiltrating eosinophils were seen in the skin of eosinophil-sufficient but not eosinophil-deficient hFcεRI/hNC16A mice by immune staining with anti-mouse major basic protein antibody (Figure 5c). Anti-hNC16A IgE injected eosinophil-sufficient hFcεRI/hNC16A mice exhibit significantly higher skin disease activity (Figure 5d) and eosinophil infiltration compared with eosinophil-deficient hFcεRI/hNC16A mice (Figure 5e).

Reconstitution of hFcεRI-expressing eosinophils restores BP in hNC16A mice

Our results suggested that both expression of hNC16A in basal keratinocytes and eosinophils expressing hFcεRI are required for anti-hNC16A IgE–mediated BP. Thus, reconstitution of NC16A mice with eosinophils expressing hFcεRI should allow for BP development after passive transfer with anti-hNC16A IgE. As shown in Figure 6a, adult hNC16A mice reconstituted intravenously with hFcεRI/hNC16A eosinophils had significantly higher skin disease scores after transfer of anti-hNC16A IgE compared with those receiving control IgE and those reconstituted with eosinophils from hNC16A mice. Similarly, neonatal NC16A mice developed clinical blisters after local intradermal reconstitution with hFcεRI/hNC16A eosinophils and passive transfer of anti-hNC16A IgE compared with neonatal hNC16A mice reconstituted with hNC16A eosinophils or mice receiving control IgE (Figure 6b). The severity of disease in neonatal hNC16A mice after passive transfer of anti-hNC16A IgE directly correlated...
to the number of hFcεRI/hNC16A eosinophils provided during local reconstitution (Figure 6c). To rule out the possibility that local injection (intradermal) of anti-hNC16A IgE and/or mouse eosinophils artificially causes tissue injury resembling BP, adult hNC16A mice were reconstituted intravenously with human eosinophils and injected intraperitoneally with anti-hNC16A IgE or control IgE (250 ng/g body weight). The mice were examined at the ear site 48 hours after IgE injection. Mice reconstituted with human eosinophils plus anti-hNC16A IgE showed (d) human IgE deposition at the BMZ by direct immunofluorescence, (e) dermal-epidermal separation, and (f) significantly increased eosinophil infiltration. Scale bars = 100 μm for panel d. *P < 0.01 (bar 4 vs. bar 3 in panel f). Arrow indicates blister site. BMZ, basement membrane zone; BP, bullous pemphigoid; Eos, eosinophils; EPO, eosinophil peroxidase; h, hour; hEos, human eosinophils; OD, optical density; SE, standard error; SEM, standard error of the mean.

DISCUSSION

Our findings show that anti-hNC16A IgE purified from BP patients are pathogenic in mice expressing human hNC16A and human FceRI, as evidenced by a subepidermal split accompanied by IgE deposition at the BMZ and eosinophil infiltration. Disease severity of anti-hNC16A IgE—induced BP is dose dependent and correlates with the degree of eosinophil infiltration. In this animal model, BP anti-hNC16A IgE—induced blister formation requires eosinophils and occurs independently of neutrophils. Thus, this study establishes that our mouse model of IgE-induced BP requires both hNC16A expression and infiltrating eosinophils that express hFcεRI.

Eosinophil infiltration has long been a hallmark of BP histologically, and eosinophils have been speculated to be pathogenically relevant for more than half a century (Charles, 1960; Dvorak et al., 1982; Schaumburg-Lever et al., 1972). However, the role of eosinophils in disease pathogenesis has not been established primarily because of lack of an appropriate model system. Although animal models of disease may not reproduce all mechanisms of human disease, they do provide insight into pathogenesis and allow for the dissection of multiple mechanisms that may contribute to complex
L Lin et al.
Eosinophils in Bullous Pemphigoid

diseases such as BP. This in vivo study clearly links eosinophils to BP disease pathophysiology using double humanized mice that express both human BP180 region hNC16A and the human FcεRI. The presence of hFcεRI on eosinophils from BP patients has recently been described (Messingham et al., 2014; Tanaka et al., 1995), and activated eosinophils are present in BP lesional skin (Engmann et al., 2017). Our results corroborate the importance of hFcεRI in eosinophil-mediated tissue pathology. These findings also confirm that IgE autoantibodies are pathogenic in BP. Binding of anti-hNC16A IgE autoantibodies to basal keratinocytes leads to eosinophil infiltration, and molecular interactions between IgE autoantibodies and hFcεRI on infiltrating eosinophils appear to be pivotal in BP blister formation. This study provides a long-awaited mechanism by which eosinophils may be recruited to the BMZ and explains the development of the histopathology characteristic of BP (i.e., eosinophil infiltration and BMZ separation). It is possible that the pathogenic activity of anti-NC16A IgE may involve other cells and secreted factors. Currently, we are dissecting the exact functional interplay between anti-NC16A IgE, high-affinity IgE receptor, eosinophils, and mast cells and the relative contributions of eosinophils versus mast cells in this model setting.

In our animal model, infiltrating eosinophils are located in the dermis. In human BP, the presence of eosinophils along the dermal-epidermal junction is considered to be a diagnostic clue for BP. Such an observation, however, is neither a diagnostic requirement nor a consistent finding. Eosinophils at the BMZ are seen in a minority of cases. More frequently, the eosinophils are located around capillaries and dispersed in the interstitial papillary and reticular dermis. It is well documented that the number and distribution of eosinophils are variable. Variations in the number and types of inflammatory cells in skin biopsy samples of lesional BP may correlate with the target antigen and type of autoantibodies. The lack of eosinophils abutting the BMZ in our animal model could be the result of sample selection, the short time course (acute nature) of the disease in our model system, or possibly the fact that eosinophil-mediated tissue destruction does not require direct contact with the BMZ and instead occurs through a mechanism not yet identified.

There are no or very low levels of expression of FcεRI on naïve/resting eosinophils under normal/physiological conditions (de Andres et al., 1997). However, expression of FcεRI on eosinophils is up-regulated under certain pathological conditions (e.g., inflammation) (Kayaba et al., 2001). In this study, eosinophils of hFcεRI/NC16A mice with human FCE1A driven under its own promoter express hFcεRI, providing a potential molecular mechanism underlying subepidermal blistering caused by anti-NC16A IgE and hFcεRI-expressing eosinophils. We clearly show that anti-NC16A IgE and eosinophils in concert are sufficient to induce subepidermal blister formation in our murine model system. It has recently been shown that BP antibodies may also induce blister formation in the presence of activated eosinophils in an alternative model system (de Graauw et al., 2017). Although the individual contributions of BP IgG and IgE were not separated in this study, blister formation was inhibited by blocking FcγRI, raising the possibility that BP IgG may also play a role in eosinophil-mediated blister formation. Our data show that anti-NC16A IgG does not significantly induce eosinophil recruitment or activation compared with anti-NC16A IgE. However, how anti-NC16A IgE and eosinophils interact with anti-NC16A IgG and infiltrating neutrophils in human BP is unclear. Sophisticated animal models such as ours are necessary to dissect the multifactorial and complicated disease machinery involved in BP pathogenesis.

The potential role of eosinophils in human disease has expanded in recent years (Jacobsen et al., 2012; Lee et al., 2010), and although eosinophils have historically been associated with allergic inflammation and parasitic infections, these granulocytes may play an important role in immune regulation and the tissue remodeling and repair associated with both health and disease (Jacobsen et al., 2012). These roles for eosinophils are manifested in a diverse group of diseases such as eosinophilic esophagitis (Blanchard et al., 2011; Mishra et al., 2008), inflammatory bowel disease (Forbes et al., 2004; Lampinen et al., 2008; Takedatsu et al., 2004; Vieira et al., 2009), and even cancer (Lotfi et al., 2007; Samoszuk, 1997). Here, we report the description of eosinophils as key players in human autoimmune disease, thus supporting another role for eosinophils outside of the classic allergy and parasitic infection.

There are numerous clinical implications that result from the understanding that eosinophils may be directly involved in mediating tissue destruction in BP. It has previously been described that eosinophilia correlates with disease severity (Bushell and Jordon, 1983; Yu et al., 2014). This information, coupled with evidence of direct contribution to tissue injury, suggests that eosinophils may be useful as a biomarker for disease activity and/or treatment success or failure. In addition, eosinophils may be a target for new therapeutics in BP. Omalizumab shows efficacy in the treatment of BP and is associated with a decrease in tissue eosinophilia, supporting the use of this therapeutic strategy (Fairley et al., 2009; Yu et al., 2014). New therapies that specifically target eosinophils are likely to be beneficial as well (Radonjic-Hoesli et al., 2015). Furthermore, the double-humanized hFcεRI/hNC16A mouse model will allow for direct manipulation, drug development, and testing in a clinically relevant in vivo model.

In summary, these data provide direct evidence for eosinophils as a pathogenic mediator of human autoimmune disease using the autoimmune blistering skin disease BP as a model. In addition to expanding the current understanding of eosinophil biology, our study highlights eosinophils as a target for the treatment of BP and establishes a model to systematically dissect the role of eosinophils in the immunopathogenesis of BP.

MATERIALS AND METHODS
Patients, sera, and antibody purification
Serum samples were collected from three patients with active BP (BP1, BP2, and BP3). These patients presented with generalized tense blisters and dermal-epidermal separation with inflammatory cell infiltration by routine histology. Direct immunofluorescence showed deposition of IgG at the BMZ of perilesional skin. Indirect immunofluorescence showed “roof staining” of salt-split human skin cryosections with IgG titers of 1:640 (BP1) and 1:320 (BP2, BP3).
NC16A-specific IgE levels were 292 (BP1), 127 (BP2), and 631 (BP3) index units, determined by ELISA as described (Messingham et al., 2009). hNC16A-specific total IgG were purified from BP patient sera using a protein G column, followed by an hNC16A-specific glutathione sepharose column as described (Liu et al., 2008). hNC16A-specific IgE were purified from BP patients’ sera using a protocol described previously with modification (Fairley et al., 2007). Briefly, IgG-depleted fractions of BP sera (by a protein G column) were loaded onto an anti-human IgG antibody (ATCC, Manassas, VA; catalog no. HB-235)–coupled Affigel-10 affinity column (Bio-Rad, Hercules, CA). The eluted IgG fractions were then loaded onto an NC16A-specific glutathione sepharose column. The concentrations of purified IgG and IgE were quantified by human IgG- and IgE-specific ELISA (Southern Biotechnology, Birmingham, AL). The purity of hNC16A-specific IgG and hNC16A-specific IgE were determined by amount of hNC16A-specific IgG or IgE in total amount of protein in the antibody preparations. The purity of hNC16A-specific IgG and IgE were 94% and 92%, respectively. Purified anti-hNC16A IgG and IgE fractions were concentrated by ultrafiltration (Millipore, Billerica, MA) and used for in vitro and in vivo experiments.

Mice and antibody passive transfer

The humanized hNC16A, humanized FcεRI, hFcerRI/hNC16A, eosinophil-deficient hNC16A mice were generated as described (Liu et al., 2008) and in the Supplementary Materials online. For antibody passive transfer in neonatal mice (24–48 hours old), hNC16A-specific IgG (100 μg/g body weight) or IgE (100–500 ng/g body weight) in 50 μl of phosphate-buffered saline (PBS) was injected intradermally into the dorsal back (Liu et al., 2008). For adult mice (8 weeks old), hNC16A-specific IgG (100 μg/g body weight) or IgE (0–200 ng/g body weight) in 25 μl of phosphate-buffered saline was injected into the ear (Chen et al., 2001). The antibody-injected skin was examined 0–48 hours after injection. The disease activity was scored as “−” to “3+” as described in the Supplementary Materials. After clinical examination, the animals were killed, and skin and serum specimens were obtained. The skin sections were used for hematoxylin and eosin staining to determine histologic evidence of subepidermal separation. Deposition of anti-hNC16A IgG and IgE at the BMZ was detected by direct immunofluorescence using FITC-conjugated anti-human IgG (Thermo Fisher Scientific, Waltham, MA; catalog no. 62-8411) and IgE antibodies (Thermo Fisher Scientific, catalog no. H15801). Skin-infiltrating eosinophils were detected by indirect immunofluorescence using mouse anti-major basic protein monoclonal antibody (provided by J. Lee, Mayo Clinic Arizona, Scottsdale, AZ), followed by Alexa Fluor 488-conjugated goat anti-rat antibody (Life Technologies, Waltham, MA; catalog no. a11006).

Quantification of infiltrating neutrophils and eosinophils

Infiltrating neutrophils in the antibody-injected skin were quantified by measuring tissue MPO activity as described (Bradley et al., 1982; Liu et al., 1997, 2008) using purified MPO as the standard. MPO content was expressed as relative MPO activity (optical density at 460 nm reading/mg protein of the mouse skin injected with pathogenic antibodies minus optical density at 460 nm reading/mg protein of the mouse skin injected with control antibodies). Protein concentrations were determined by the Bio-Rad dye-binding assay using bovine serum albumin as a standard.

Purification of mouse eosinophils and human eosinophil culture

Eosinophils were purified from the peripheral blood of hNC16A and hFcerRI/hNC16A mice using the MACS cell separation system (Miltenyi Biotec, Auburn, CA) (Li et al., 2009). Eosinophils were also isolated from the peritoneal cavity of hNC16A and hFcerRI/hNC16A mice injected intraperitoneally with 1 ml of 4% thioglycollate broth for 5 days using Chemicon’s Eosinophil Isolation Kit (EMD Millipore, Temecula, CA). Purity of eosinophils by MACS system and Eosinophil Isolation Kit were greater than 96% (median = 94%) and greater than 89% (median = 87%), respectively. Expression of hFcerRI on the surface of purified eosinophils was confirmed by flow cytometry (Cyan ADP, Beckman Coulter, Pasadena, CA). Briefly, the cells were incubated with human IgE (BD Bioscience, catalog no. Ab63866), followed by staining with antigen-presenting cell (APC)—conjugated anti-human IgE antibody (BioLegend, San Diego, CA; catalog no. 325508, clone MHE-18). The flow data were displayed by APC against APC-Cy7 (nothing labeled in this color, just for visualization purpose). Human eosinophil cell line HL60 (ATCC, HL-60 clone 15) was derived from a leukemia cell line and has been used as a cell culture for human eosinophil research (Fischkoff et al., 1984). HL60 cells were maintained in RPMI 1640 media (Gibco), supplemented with 10% fetal bovine serum (Sigma), and eosinophilic differentiation was induced by treating HC15 cells with 0.5 μmol/L butyric acid (Sigma) for 5 days (Fischkoff et al., 1984).

In vitro eosinophil activation

Eosinophil activation in vitro was determined by eosinophil superoxide production (oxidative burst) and degranulation (EPO release) as described in the Supplementary Materials.

Neutrophil depletion studies

To deplete neutrophils, adult hFcerRI/hNC16A mice were pretreated with intraperitoneal injection of rat anti-mouse Ly6G antibody or match control antibody (BioLegend, catalog no. 127601) at a dose of 150 μg per mouse and 12 hours later injected at the ear with anti-hNC16A IgE or control IgE (Li et al., 2008). Neutrophil levels in circulation were monitored by direct cell counting of blood smears stained with Wright dye (Baxter Diagnostics Inc., McGaw Park, IL).

Reconstitution of hFcerRI-expressing eosinophils in hNC16A mice

Adult hNC16A mice were injected intravenously with 5 × 10⁶ eosinophils from hNC16A or hFcerRI/hNC16A mice and 30 minutes later injected at the ear with anti-hNC16A IgE or control IgE (100 ng/g body weight). Adult hNC16A mice were injected intravenously with 5 × 10⁶ human eosinophils and 30 minutes later injected intraperitoneally with anti-hNC16A IgE or control IgE (250 ng/g body weight). Neonatal hNC16A mice were injected intradermally at the dorsal back with anti-hNC16A IgE (100 ng/g body weight) or anti-hNC16A IgG (100 μg/g body weight) plus 2.5 × 10⁶ eosinophils from hNC16A or hFcerRI/hNC16A mice and examined at 48 hours after IgE injection.
Eosinophils in Bullous Pemphigoid

L Lin et al.

Statistics
The data are expressed as mean ± standard error of the mean and were analyzed using the Student t test or 2-way analysis of variance. A P-value less than 0.05 was considered significant.

Study approval
Animal care and animal experiments were in accordance with the Animal Care Committee at the University of North Carolina—Chapel Hill. Written informed consent was received from participants before inclusion in the study. This study was approved by the University of North Carolina Institutional Review Board.

CONFLICT OF INTEREST
The authors state no conflict of interest.

ACKNOWLEDGMENTS
The authors acknowledge Daniel Zedek for his assistance with histology. This study was supported by National Institutes of Health grants AI07924 and AI40768 (ZL), AR06372 (NL), R21AI88628 (BHK), AR32599 (LAD), and RAR061567A (JLJ); National Natural Science Foundation of Science 81301370 (LL); and the Dermatology Foundation (DAC). The UNC Flow Cytometry Core Facility is supported in part by P30 CA011006 Cancer Center Core Support Grant to the UNC Lineberger Comprehensive Cancer Center.

We dedicate this work to our coauthor, James J. Lee, who passed away March 25, 2017. As an expert in eosinophil biology, Lee’s contribution and collaboration in this body of work, and countless others, was substantial.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at www.jidonline.org, and at https://doi.org/10.1016/j.jid.2017.11.031.

REFERENCES
Lever W. Pemphigus and pemphigoid. Springfield, IL; Thomas CC; 1965.

