Acute Ethanol Exposure Augments Low-Dose UVB-Mediated Systemic Immunosuppression via Enhanced Production of Platelet-Activating Factor Receptor Agonists

TO THE EDITOR
Platelet-activating factor (PAF; 1-alkyl-2-acetyl glycerophosphocholine) is a lipid-derived mediator with diverse functions (Shimizu, 2009). Glycerophosphocholines (GPCs) from cell membranes with unsaturated sn-2 fatty acids can undergo oxidation resulting in the formation of oxidized GPCs, which can act as potent agonists for the PAF receptor (PAF-R) (Konger et al., 2008). Many environmental pro-oxidative stressors from cigarette smoke to UVB can induce systemic immunosuppression via generation of oxidized GPC PAF-R ligands (Sahu et al., 2013; Walterscheid et al., 2002; Wolf et al., 2006; Yao et al., 2009; Zhang et al., 2008). Of interest, UVB-generated PAF-R ligands also augment experimental melanoma tumor growth by suppressing anti-tumor immunity in a process involving mast

Abbreviations: CPAF, 1-hexadecyl-2-N-methylcarbamoyl glycerophosphocholine; ETOH, ethanol; GPC, glycerophosphocholine; KBP, platelet-activating factor receptor–expressing human epithelial KB cell line; PAF, platelet-activating factor; PAF-R, platelet-activating factor receptor
Accepted manuscript published online 23 January 2019; corrected proof published online 8 March 2019 © 2019 The Authors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.

JB Travers et al.
Ethanol Augments UVB Immunosuppression via PAF-R
cells and regulatory T cells (Damiani and Ullrich, 2016; Sahu et al., 2012). Recently, our group demonstrated that ethanol (EtOH) exposure results in an augmentation of enzymatic PAF synthesis in response to thermal burn injury, in a process involving cytosolic phospholipase A2 (Harrison et al., 2018). The present study was designed to test the hypothesis that EtOH exposure could generate increased levels of PAF in response to UVB, and that UVB will be more immunosuppressive when EtOH intoxicated. This is a relevant concern, as the immunosuppressive effects of UVB contribute to (Damiani and Ullrich, 2016), and EtOH exposure is linked to an increased incidence of non-melanoma skin cancer (Freedman et al., 2003; Fung et al., 2002; Jensen et al., 2012).

First, to evaluate whether EtOH can augment UVB-mediated production of PAF-R ligands, we pre-incubated the human keratinocyte-derived cell line HaCaT with 1% EtOH for 30 minutes, then treated with 1,000 J/m² UVB using our Philips unit as described previously (Marathe et al., 2005; Yao et al., 2009). Ten minutes after UVB treatment, the lipids were extracted as described previously (Marathe et al., 2005) using the Bligh & Dyer method (Bligh and Dyer, 1959). As multiple GPC species can act as PAF-R agonists, we quantified total PAF-R biochemical activity using PAF-R expressing KBP cells that produce IL-8 when the receptor is activated (model in Figure 1a) (Harrison et al., 2018; Pei et al., 1998). KBP and PAF-R negative human epithelial KB cell line cells were exposed to lipid extracts from HaCaT cells treated with sham, UVB, EtOH alone, or EtOH + UVB and incubated for 6 hours. The KBP cells were also treated with 1 nM of the metabolically stable PAF-R agonist carbamoyl PAF (CPAF) or 0.1% EtOH as vehicle for positive and
negative controls. As shown in Figure 1b, lipid extracts derived from HaCaT cells treated with EtOH + UVB resulted in increased levels of IL-8 release from KBP cells. Yet, this fluence of UVB alone resulted in only a minimal level of increased IL-8 release in KBP cells (which was not statistically significant), and none of the lipid extracts triggered IL-8 release in PAF-R−negative human epithelial KB cell line cells with 10 nM of the phorbol ester phorbol myristic acetate used as a positive control (data not shown). Of interest, structural analysis of PAF-R agonistic activity following the combination of EtOH + UVB in HaCaT cells by mass spectrometric analysis revealed only enzymatically generated PAF agonists 1-hexadecyl-2-acetyl GPC and 1-octadecyl-2-acetyl GPC, not significant amounts of oxidized GPCs (data not shown), which we have described are generated following higher fluences of UVB (Marathe et al., 2005). Previously, we have demonstrated that topical application of 20% EtOH to de-identified discarded human skin explants derived from surgical contouring procedures (exempted study, Wright State University) 30 minutes before a thermal burn injury results in an augmentation of PAF production (Harrison et al., 2018). Using this protocol, we tested whether topical EtOH pretreatment can increase PAF following UVB treatment. Of importance, we used a fluence of UVB (1,000 J/m²) that we have previously reported results in only a small reproducible increase in PAF activity (Travers et al., 2010). Ten minutes post UVB/sham, the epidermis was curetted, weighed, and lipids extracted. As shown in Figure 1c, pretreatment of skin with EtOH resulted in an exaggerated amount of UVB-generated PAF. We next tested whether EtOH intoxication can increase the ability of UVB to generate PAF-R agonists in murine skin in vivo. These studies used a previously published murine model of intraperitoneal injection of 2.4 g/kg (approximately 400 µl of 20%) EtOH (Faunce et al., 1997; Harrison et al., 2018) into anesthetized C57BL6 mice followed 30 minutes later by UVB treatment (2,500 J/m²) of an area of 2 × 2 cm² of shaved lower back skin. All animal studies were approved by the Institutional Review Boards of Indiana University and Wright State University. Ten minutes following sham or UVB treatment, the mice were euthanized, and the epidermal skin was removed using a curette and weighed, and lipids extracted. As depicted in Figure 1d, lipid extracts from the skin of UVB-treated intoxicated mice generated more PAF-R activity than saline-treated counterparts. Again, none of these lipid extracts from human or murine skin generated IL-8 release in PAF-R−non-expressing human epithelial KB cell line cells (data not shown).

As UVB induces systemic immunosuppression (as measured by inhibition of delayed type hypersensitivity reactions to Candida antigen, or contact hypersensitivity reactions to the allergen DNFB) in a PAF-R−dependent manner (Walterscheid et al., 2002; Zhang et al., 2008), our finding that EtOH augmented UVB-induced PAF production prompted examination of the ability of EtOH intoxication on UVB-induced systemic immunosuppression. To assess the effects of the injury on immune competence, wild-type mice received various fluences of...
UVB (1,000–5,000 J/m²) 30 minutes following EtOH or saline treatment, or control treatments and were then subjected to the well-established delayed-type hypersensitivity protocol (Sahu et al., 2013; Zhang et al., 2008). Briefly, 5 days after treatments, the mice were sensitized with the chemical DNFB applied topically to the shaved non-UVB–treated part of the upper back (to assess for systemic immunosuppression) and challenged 9 days later with DNFB applied to the ears. The intensity of the immune response to DNFB was measured by change in the ear thickness before and 24 hours after the delayed challenge. Animals were also injected with various doses of the CPAF or histamine as controls for PAF-R–dependent and –independent immunosuppression, respectively. PAF-R-deficient mice (Paffr−/−) mice only received the high dose of 5,000 J/m², because we have previously reported that these mice do not respond to UVB with systemic immunosuppression (Zhang et al., 2008). As shown in Figure 2a, intoxicated wild-type mice responded to lower fluences of UVB with decreased elicitation responses to DNFB compared to saline-treated counterparts. Intoxication had no effect alone, and did not augment the immunosuppressive effects of CPAF. In contrast, UVB and CPAF did not exert immunosuppressive responses in saline- or EtOH-treated Paffr−/− mice, yet histamine treatment resulted in a decreased DNFB response (Figure 2b). Application of DNFB to unsensitized wild-type mice only resulted in approximately 10% of the ear thickness reactions found in sensitized mice, and addition of EtOH did not modulate this irritant effect (data not shown). These studies indicate that EtOH intoxication can augment the immunosuppressive effects of UVB through augmented PAF generation.

Alcohol exerts profound effects in humans. The combination of EtOH and UVB is common, and studies have described alcohol use as a risk factor for skin cancer (Freedman et al., 2003; Fung et al., 2002; Jensen et al., 2012). The present studies demonstrate that EtOH exposure can increase PAF synthesis in response to UVB, and that an outcome of this clinically relevant combination is augmented UVB-mediated systemic immunosuppression leading to increased risks of EtOH-associated morbidity and skin cancer.

CONFLICT OF INTEREST
The authors state no conflict of interest

ACKNOWLEDGEMENTS
This research was supported in part by grants from the National Institutes of Health R01 HL062996 (JBT), K22 ES023850 (RPS), and Veteran's Administration Merit Award 5I01BX000853 (JBT).

AUTHOR CONTRIBUTIONS
JBT, JW, JAC, CB, CMR, and RPS performed experiments and data analysis. JBT supervised the study, and JBT and RPS wrote the manuscript.

Jeffrey B. Travers1,2,*
Jonathan Weyerbacher3, Jesus A. Ocaná4, Christina Borchers1, Christine M. Kapp1 and Ravi P. Sahu1
1Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, Ohio, USA; 3Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA; and 4Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
*Corresponding author e-mail: jeffrey.travers@wright.edu

REFERENCES