Role of SNAREs in Atopic Dermatitis—Related Cytokine Secretion and Skin-Nerve Communication

Jianghui Meng1,2, Jiafu Wang1, Joerg Buddenkotte3,4, Timo Buhl5 and Martin Steinhoff2,3,4,6,7

The role of soluble N-ethylmaleimide-sensitive factor attachment protein receptors in atopic dermatitis (AD) is unknown. This study identifies the function of soluble N-ethylmaleimide sensitive factor attachment protein receptor in AD-related cytokine secretion and epidermis-nerve communication. Herein, we report that various AD-related cytokines thymic stromal lymphopoietin, endothelin-1, and inflammatory tumor necrosis factor-α activated distinct but overlapping sensory neurons. Tumor necrosis factor-α potentiated thymic stromal lymphopoietin—induced Ca2+-influx, whereas endothelin-1 caused itch-selective B-type natriuretic peptide release. In primary human keratinocytes, B-type natriuretic peptide upregulated genes promoting dermatological and neuroinflammatory diseases and conditions. VAMP3, SNAP-29, and syntaxin 4 proved important in driving cytokine release from primary human keratinocytes. Depletion of VAMP3 inhibited nearly all the cytokine release including thymic stromal lymphopoietin and endothelin-1. Accordingly, VAMP3 co-occurred with endothelin-1 in the skins of patients with AD. Our study pinpoints the pivotal role of soluble N-ethylmaleimide sensitive factor attachment protein receptors in mediating cytokine secretion related to AD. VAMP3 is identified as a suitable target for developing broad-spectrum anticytokine therapeutics for controlling itch and atopic skin inflammation.

INTRODUCTION

Atopic dermatitis (AD) is a chronic inflammatory skin condition with eczematous lesions, pruritus, sometimes prurigo, and dry skin (Steinhoff et al., 2012; Weidinger and Novak, 2016; Weidinger et al., 2018). Because the prevalence of AD has increased steadily, investigating the cause of this chronic skin disease and developing new treatment strategies continue to be crucial (Boguniewicz and Leung, 2011; Buddenkotte and Steinhoff, 2010; Silverberg, 2017). In AD, cytokine gene transcripts are highly upregulated and their release elevated (Brunner et al., 2018; Homey et al., 2006). The contribution of keratinocytes (KCs) to the pathogenesis of AD is clear by the secretion of cytokines (Pastore et al., 2006). In addition, certain cytokines can activate sensory fibers to transduce itch signals, leading to the vicious cycle of itching, scratching, and inflammation. However, the molecular mechanisms regulating neuroimmune and neuro-epidermal communication in AD are still poorly understood. KC-derived thymic stromal lymphopoietin (TSLP) is a critical immune regulatory cytokine for the induction of chronic pruritus in patients with AD (Wilson et al., 2013). Endothelin-1 (ET-1) is also secreted by KCs and activates sensory neurons, immune cells, and feedback on KCs (Kido-Nakahara et al., 2014). It remains unknown whether these two important pruritogens activate commingled or discrete neuronal subpopulations. Proinflammatory tumor necrosis factor-α (TNF-α) is oversecreted in AD (Behniafard et al., 2012), and its receptors have been detected on dorsal root ganglion neurons (DRGs). However, the function of TNF-α in potentiation of pruriceptive primary sensory fibers in response to other pruritogens, such as TSLP or ET-1, remains unclear.

The abnormality of the responses associated with over-secretion of cytokines from KCs in AD might be related to certain soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs; Rothman, 2014). Typically, SNAREs consist of synaptosomal-associated protein, synaptin, and vesicle-associated membrane protein, known to form complexes that mediate vesicle transport and vesicle fusion. Each of them has multiple isoforms, depending on the

1School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland; 2Department of Dermatology and UCD Charles Institute for Translational Dermatology, Dublin, Ireland; 3Department of Dermatology and Venereology, and Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; 4Medical School, Qatar University, Doha, Qatar; 5Department of Dermatology, University Medical Center Göttingen, Göttingen, Germany; 6Weill Cornell Medicine-Qatar, School of Medicine, Qatar University, Doha, Qatar; and 7Department of Dermatology, Weill Cornell University, New York, New York, USA

Correspondence: Jianghui Meng, School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin City University, Dublin, Ireland. E-mail: jianghui.meng@ dcu.ie; Jiafu Wang, School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland. E-mail: jiafu.wang@dcu.ie; and Martin Steinhoff, Department of Dermatology and Venereology, and Translational Research Institute, Hamad Medical Corporation, Doha, Qatar. E-mail: MSteinhoff@hamad.qa

Abbreviations: AD, atopic dermatitis; BNP, B-type natriuretic peptide; DRG, dorsal root ganglion neuron; ET-1, endothelin-1; KC, keratinocyte; KD, knockdown; phKC, primary human keratinocyte; shRNA, short hairpin RNA; SNARE, soluble N-ethylmaleimide sensitive factor attachment protein receptor; STX, syntaxin; TGN, trigeminal ganglionic sensory neuron; TLR, toll-like receptor; TNF-α, tumor necrosis factor-α; TSLP, thymic stromal lymphopoietin

Received 8 January 2019; revised 8 April 2019; accepted 23 April 2019; accepted manuscript published online 23 May 2019; corrected proof published online 6 August 2019

© 2019 The Authors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.
Innate immunity toll-like receptors (TLRs) are important players in AD-associated inflammation, skin barrier dysfunction, and pruritus (Kubo et al., 2014; Stowell et al., 2009). TLR3 upregulation contributes to dry skin which is essential for the development of chronic itch, such as in AD. TLR3 agonist, Poly(I:C), is a pruritogen that induces pruritus upon intradermal or intrathecal injection in mice (Liu et al., 2012). Activation of TLR3 serves as a useful platform for assaying SNARE function in the inflammatory cellular response. The aim of this study is to (i) investigate the release mechanisms of pruritogens or cytokines involved in the pathogenesis of AD; (ii) use RNA-Seq to identify AD-associated cytokine transcripts in primary human keratinocytes (phKCs); (iii) use calcium imaging on DRGs to validate the functional consequences of key cytokines; (iv) pinpoint the key SNAREs involved in the release of AD-associated cytokines from phKCs; (v) immunostain and image SNAREs and pruritus-related cytokines in healthy and AD skin specimens to highlight the unique properties of SNARE in AD.

RESULTS

TLR3 activation induced robust upregulation of cytokine transcripts and AD-related cytokine release

TLR3 activation in phKCs produces proinflammatory cytokines in inflammatory skin diseases, including AD (Yasuike et al., 2017); consequently, phKCs are a reasonable model to investigate the function of SNAREs in regulating AD-associated cytokine secretion. Using RNA-Seq, the functional significance of TLR3 was confirmed on cultured phKCs because its relative transcript levels in reads per kilobase of exon model per million mapped reads were higher than that of other TLR isoforms (Figure 1a). Treatment with Poly(I:C) resulted in the upregulation of numerous cytokines (Figure 1b). We observed 1,800-, 64-, 21.1-, 9.5-, and 2.5-fold upregulation of CXCL10, TNF, CCL5, TSLP, and ET-1, respectively (Figure 1b). Among the 120 gene transcripts co-upregulated, 30 cytokine genes were elevated significantly ($P < 0.05$). After incubation of phKCs with Poly(I:C), the coreleased cytokines in the supernatant were measured using ELISAs or cytokine array. Remarkably, Poly(I:C) elicited ~49-fold of ET-1 (Figure 1c) and ~40-fold of TSLP release (Figure 1d). Using
the semiquantitative cytokine array, stimulation enhanced the secretion of EMMPRIN and 17 other cytokines (Figure 1e). Among them, IL-1β, IL-6, IL-8, IL-17A, TNFα, CCL2/3/4/5, GM-CSF, and CXCL10 are related to the inflammatory response and appeared to be upregulated in patients with AD (Czarnowicki et al., 2009; Fedenko et al., 2011; Giustizieri et al., 2001; Gros et al., 2009). The function of EMMPRIN in itch is unknown, but it is involved in chronic inflammation (Yurchenko et al., 2010).

ET-1, TSLP, and TNF-α activated distinct but overlapping sensory neuronal subsets

Despite the importance of ET-1, TSLP, and TNF-α in KC-derived itch or skin inflammation, the distinct or communal biological consequences attributed to neuronal activation are still poorly understood. To address this question, mouse DRGs were treated with TSLP (20 ng/ml), ET-1 (100 nM), or TNF-α (100 ng/ml), sequentially, before being monitored using Ca²⁺-imaging (Figure 2a). These concentrations were selected based on previously used protocols for activating skin cells and sensory neurons (Jin and Gereau, 2006; Kidokonakohara et al., 2014; Meng et al., 2018; Shin et al., 2016). After analysis of 167 total neurons with sequential application, we observed that ET-1, TNF-α, and TSLP activated 4.8%, 9.6%, and 11% of total neurons, respectively, and the responsive neurons were partially overlapping (Figure 2b and Venn diagram). Subsequently, we asked whether cytokines, such as TSLP, ET-1, or TNF-α, have additive or synergistic effects. DRGs were incubated with TSLP, followed by washout, and then brief incubation with TNF-α or ET-1, before cells were incubated with the same concentration of TSLP again (Figure 2c). We found that TNF-α (Figure 2c) but not ET-1 (Figure 2d) caused TSLP to give a greater calcium spike during the second incubation than the first one, suggesting that TNF-α but not ET-1 can potentiate the TSLP-mediated effects on DRGs.

ET-1 induced B-type natriuretic peptide (BNP) release from trigeminal ganglionic sensory neurons (TGNs), and BNP upregulated genes in keratinocytes associated with dermatological diseases

In a previous study, we have shown that T helper type 2—pruritic cytokine IL-31 can induce BNP release from DRGs (Meng et al., 2018). Herein, we reaffirmed that IL-31 also induced BNP release from TGNs (Figure 3a). In addition, treatment of TGNs with ET-1 caused ~6-fold increment of BNP release over the basal level (Figure 3a). To investigate whether BNP exerts any effects on gene regulation in phKCs, we treated phKCs with 1 μM BNP for 2 hours and performed RNA-Seq. We identified that the BNP receptor NPR2 is transcribed at higher levels than NPR1 and NPR3 in unstimulated phKCs (Figure 3b), and revealed that BNP induced upregulation of many genes (Figure 3c). Canonical pathway analysis revealed that the BNP effect on phKCs is closely related to dermatological diseases and skin conditions (Figure 3d).

TSLP and ET-1 release from phKCs requires distinct SNAREs

We performed knockdown (KD) of SNARE in phKCs using specific short hairpin RNA (shRNA) lentiviral particles. Western blotting detected substantial reduction of V3, V8, STX3, STX4, S23, and S29 expression levels by specific shRNA compared with nontargeted shRNA controls (Figure 4a–c). phKCs did not express V1 and V2 (Figure 4a). KD of S23, V3, or STX3 expression resulted in significant reduction of Poly(I:C)-induced ET-1 release, whereas KD of S29 and STX4 only resulted in a minimal, nonsignificant reduction (Figure 4d). KD of S29 caused a more pronounced
reduction of TSLP release than KD of S23, whereas STX4 KD seemed to result in more inhibition of TSLP release than STX3 KD (Figure 4d). KD of V8 was incomplete (Figure 4a) despite various shRNA clones attempted. Partial KD of V8 did not significantly affect either TSLP or ET-1 release (Figure 4d). Furthermore, KD of V3 resulted in substantial inhibition of both TSLP (≈80%) and ET-1 (≈70%) release (Figure 4d). Thus, V3 seemed to be the most critical SNARE in mediating both ET-1 and TSLP release. In fact, double-immunostaining of ET-1 with V3 (Figure 4e, top panels) or with TSLP (Figure 4e, bottom panels) revealed that the immune signal of ET-1, TSLP, and V3 seemed to be spread out and colocalized close to the edge of the plasma membrane in Poly(I:C)-stimulated phKCs, suggesting cotrafficking of ET-1, TSLP, and V3 (Figure 4e).

As a translational approach, we also investigated the localization of V3, ET-1, and TSLP on skin of patients with AD and compared the results with those of healthy controls. In the healthy skin control, the immunosignals of ET-1 and TSLP were weak (Figure 5a), in agreement with previous findings (Aktar et al., 2015; Nakahara et al., 2018; Soumelis et al., 2002). Whereas in AD skin, ET-1 and TSLP signals were enhanced greatly (Figure 5a). In healthy skin, the V3 immunosignal was predominantly located in the cytosol of epidermal KCs, with much less signal detected in the dermis (Figure 5b). In AD skin, however, ET-1 immunosignals appeared colocalized with V3 in the epidermal layer (Figure 5b, right panel). The calculated Pearson correlation coefficient confirmed colocalization of ET-1 with TSLP (Figure 5c) and ET-1 with V3 (Figure 5d) in AD skin. Collectively, our data show the importance of V3 in mediating exocytosis of pruriceptive cytokine-containing vesicles.

V3, STX4, and S29 are important SNAREs in controlling release of various itch-related cytokines from phKCs

Using cytokine arrays, we further analyzed supernatant samples collected for measuring ET-1 and TSLP contents after KD of a specific SNARE isoform (Figure 4a–d). V3 KD resulted in a substantial reduction of Poly(I:C)-induced release of CXCL9/10/11 and CCL2/3/4/5/20, as well as inflammatory mediators, such as EMMPRIN, GM-CSF, IL-1β/6/-17A, matrix metalloproteinase-9, and TNF-α (Figure 6a).
Guttman-Yassky and Krueger, 2017; Paller et al., 2017), and Nakahara et al., 2014; Steinhoff et al., 2003, 2006).

neuroimmune communication (Frateschi et al., 2011; Kido-Nakahara et al., 2014; Steinhoff et al., 2003, 2006).

Role of SNAREs in Atopic Dermatitis

J Meng

AD is a common yet poorly understood chronic inflammatory skin disease with an unmet need for effective therapeutics (Weidinger et al., 2018). Our study identified previously unrecognized molecules involved in AD, hinted at previously unknown neuronal-immune and neuroepidermal circuits, and discovered SNAREs as potential targets for the treatment of AD.

KCs play a critical role in atopic skin inflammation (Giustizieri et al., 2001), adaptive and innate immunity (Guttman-Yassky and Krueger, 2017; Paller et al., 2017), and neuroimmune communication (Frateschi et al., 2011; Kido-Nakahara et al., 2014; Steinhoff et al., 2003, 2006).

Again, partial KD of V8 (Figure 4a) failed to inhibit cytokine release (Figure 6a). KD of STX4 exerted a more pronounced effect than KD of STX3 with respect to the inhibition of CXCL/5/9/11, CCL2/3/4, GM-CSF, or TNF-α (Figure 6b). In contrast, KD of STX3, but not STX4, substantially reduced EMMPRIN and IL-1α release (Figure 6b). KD of S29 resulted in a greater inhibitory effect than KD of S23 on the release of nearly all cytokines, with the exception of CXCL11 and CCL20 (Figure 6c).

Taken together, our data indicate that V3, STX4, S29, and, to a lesser extent, S23 are important SNAREs for regulating release of various cytokines from phKCs involved in AD. These proteins might be potential targets for designing new antipruritic treatments for AD.

DISCUSSION

AD is a common yet poorly understood chronic inflammatory skin disease with an unmet need for effective therapeutics (Weidinger et al., 2018). Our study identified previously unrecognized molecules involved in AD, hinted at previously unknown neuronal-immune and neuroepidermal circuits, and discovered SNAREs as potential targets for the treatment of AD.

KCs play a critical role in atopic skin inflammation (Giustizieri et al., 2001), adaptive and innate immunity (Guttman-Yassky and Krueger, 2017; Paller et al., 2017), and neuroimmune communication (Frateschi et al., 2011; Kido-Nakahara et al., 2014; Steinhoff et al., 2003, 2006).

Investigation of the innate-immune-derived cytokines in KCs with subsequent activation of neuroimmune circuits may help us to better understand AD and to design therapeutics to control neuroinflammation and pruritus simultaneously in AD. First, we demonstrated that activation of TLR3 in phKCs produced a robust upregulation of gene transcripts of TSLP, ET-1, CXCL10, TNF-α, CCL5, and other cytokines. Many cytokines, such as TSLP, ET-1, EMMPRIN, GM-CSF, IL-1/-6/-17A, CXCL1/5/9/10/11, CCL2/3/4/5/20, and TNF-α are correlated.

Neuroepidermal communication is an important pathophysiological process in AD, in which various mediators from KCs (Kido-Nakahara et al., 2014; Steinhoff et al., 2001, 2005; Wilson et al., 2013) affect inflammation and pruritus through sensory neuronal signaling (Kido-Nakahara et al., 2014; Steinhoff et al., 2000). Herein, we show that TSLP, TNF-α, and neuromediators such as ET-1 can activate distinct but overlapping DRG subsets, suggesting that these cytokines may signal either separately or together into sensory neuronal subsets to propagate itch sensation. TSLP, ET-1, and TNF-α expression were upregulated in AD skin samples, with TSLP having increased ~100-fold that of healthy skin samples (Fornasa et al., 2015). Topical application of vitamin D3 or low-calcemic analog MC903 induced TSLP expression in epidermal KCs and triggered AD. The serum level of TSLP at day 4 in ears treated with MC903 reached ~7 ng/ml (Li et al., 2006). In fact, a number of different cell types (epithelial, mast, stromal, and dendritic cells) can release these cytokines (Elder et al., 2016; Soumelis et al., 2002).
This upregulation of proinflammatory cytokines within AD could have an even greater effect in stimulating sensory neurons and propagating the sensation of pathological itch. Our finding of TNF-α potentiation of TSLP-induced Ca²⁺-transients in DRGs highlights a cooperative, synergistic role of overactive cytokines that may magnify an even greater sensation of itch.

In this study, we found that ET-1 and IL-31 can stimulate TGNs to release BNP. Moreover, BNP upregulated several genes in pKCs including PDE9A, LRT12, PRND, WDF4Y4, MYLPF, PMCH, MGP, and FA2H. Future studies are necessary to further explore the role of these genes in inflammation, itch, and AD. Canonical pathway analysis of RNA-Seq data indicates that the feedback effect of gene regulation induced by BNP on pKCs is highly related to dermatological diseases/conditions. Consistently, our previous study shows that elevated expression of BNP in TGN, DRG, and skin is linked to IL-31—induced itch and AD (Meng et al., 2018). Thus, peripheral BNP may play a significant role in modulating inflammatory response in the skin during AD. Recent papers support this notion by showing that BNP is implicated in AD transmission in dog and mouse itch models (Pitake et al., 2018; Ralvenius et al., 2018). Altogether, our study adds insights into the itch circuits in the neuron-skin communications (Graphical Abstract).

The effective treatment of AD requires designing efficacious therapeutics to intervene in multiple cytokine signaling pathways (Leung and Guttman-Yassky, 2014; Malajian and Guttman-Yassky, 2015). Our results provide evidence that SNARE proteins are critical in releasing cytokines from KCs during inflammation and bridging skin-nerve communication (Graphical Abstract). We show that V3, STX4, S29, and S23 play a pivotal role in regulating the function of pKCs through controlling the release of cytokines, such as GM-CSF, IL-1, IL-6, CXCL5/9/11/2, CCL3/4/5/20, matrix metalloproteinase-9, TSLP, ET-1, and TNF-α. In addition, V3, S29, STX4, and S23 differentially mediate cytokine release, suggesting a selective role of various SNAREs in different inflammatory cascades, a finding that needs to be further explored. For example, V3 and S29 are critical for AD-related cytokine release. A mutation of S29 causes a neurocutaneous syndrome with cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma. S29KO or KC-specific S29KO mice are neonatal lethal, and their skin demonstrates a disturbed epidermal differentiation (Schiller et al., 2016a, 2016b). Notably, V3 was colocalized with ET-1 on the plasma membrane of Poly(I:C)-stimulated pKCs, in great contrast to the unstimulated cells. Likewise, V3 was found to be colocalized with ET-1 in KCs of AD skin, in agreement with the importance of V3 in mediating the release of a broad range of cytokines upon activation of TLR3. These findings are significant because TSLP is closely related to lesional AD, and its signaling is required for IL-13—induced “Atopic March” and AD progression; ET-1 is increased in AD skin but not in pruritic psoriatic skin (Natkemper et al., 2018). Though the direct link between ET-1 and AD is unclear, it has been reported that ET-1 induces the production of IL-25 to accelerate T helper type 2 immune deviation (Aktar et al., 2015) and polarizes the dendritic cell-T-cell response to promote the chronicity and persistence of inflammatory skin disease (Nakahara et al., 2018). Moreover, ET-1 levels were positively correlated with AD clinical severity, itch intensity, and serum IgE levels during AD exacerbation (Gomes et al., 2012; Katugampola et al., 2000; Natkemper et al., 2018;
Thus, it is reasonable to deduce that suppression of elevated release of KC-derived AD-related cytokines by targeting V3 might pose an exciting development in the area of treating AD and other pruritic skin diseases.

In conclusion, our study not only provides evidence of particular SNAREs mediating the release of AD-related cytokines from phKCs but also points out a previously unknown pathophysiological role of certain cytokines in the neuro-immune axis of AD (Graphical Abstract). Rather than targeting just one or a few particular cytokines or single kinase pathways (Brunner et al., 2017), our data provide a perspective for targeting a group of inflammatory and pruritic mediators, as well as neuropeptides and their subsequent cell signaling cascades, to treat AD and probably other chronic inflammatory skin diseases.

MATERIALS AND METHODS

Animal and human rights

Housing, handling, and experimental procedures of C57BL6 mice were approved by the University College Dublin Ethics Committee and the Irish authorities. The human skin tissues were purchased from Tissue Solutions (Glasgow, Scotland); thus, institutional approval and patient consent was not necessary.

Cell cultures

PhKCs provided by Lonza were cultured in the KBM-Gold plus SingleQuots supplements for KCs (Lonza, Basel, Switzerland).
The procedures for isolation and digestion of mouse dorsal root or trigeminal ganglions were described elsewhere (Eckert et al., 1997). Cells were seeded onto 8-well IBIDI chambers precoated with poly-L-lysine (0.1 mg/ml) and laminin (20 μg/ml) in DMEM with nerve growth factor (50 ng/ml), 100 U/ml penicillin G, 100 μg/ml streptomycin, and 5% fetal bovine serum, with Cytosine-β-D-arabinofuranoside (10 μM) added.

RNA-Seq

Three batches of phKCs from three different human healthy donors were treated with or without 20 μg/ml Poly(I:C) or 1 μM human BNP for 2 hours before cell pellets were harvested and entrusted to IMGM Laboratories GmbH (Martinsried, Germany) for RNA-Seq using NextSeq 500 next-generation sequencing system (Illumina, San Diego, CA). The expression values were processed as reads per kilobase of exon model per million mapped reads. To analyze statistically significant expression results, the CLC Genomics Workbench tool “Empirical analysis of DGE” (Qiangen Bioinformatics, Redwood City, CA) was used. A gene or transcript is classified as induced in a specific comparison if its false discovery rate—corrected P-value is no more than 0.05, and if its fold-change value greater than 2. Canonical pathway analysis was performed using Qiangen Bioinformatics software.

Immunofluorescence staining

For ET-1, TSLP, and V3 staining in cultured phKCs, cells were dual-labeled overnight at 4°C with mouse anti-ET-1 (1:1000; ab2786; Abcam, Cambridge, United Kingdom), rabbit anti-TSLP (1:100, ab47943, Abcam), or rabbit anti-V1/2/3 (1:100; 104 203; SYSY, Göttingen, Germany), before adding secondary donkey anti-rabbit Alexa 488 (1:2000) and anti-mouse Alexa 594 (1:2000) for 1 hour at room temperature. At the end, specimens were mounted using ProLong Gold antifade reagents (P36935; Invitrogen, Carlsbad, CA) containing DAPI.

Human skin from three donors with AD and three healthy control subjects (Tissue Solutions, Glasgow, Scotland) were sectioned and deparaffinized before being boiled in DAKO antigen retrieval buffer containing DAPI. Specimens were incubated for 1 hour with secondary antibodies (1:2000; Alexa 594 goat anti-mouse and Alexa 488 goat anti-rabbit; Invitrogen). Images were taken using the LSM710 confocal microscope (Carl Zeiss MicroImaging, Jena, Germany) and the Zen software (Universal Imaging, Göttingen, Germany).

SNARE KD

Cultured phKCs were incubated with shRNA lentiviral particles (Sigma-Aldrich, Wicklow, Ireland) that specifically target V3, V8, S23, S29, STX3, STX4, or nontargeted particles (400 transducing units/well). After 2 days in culture, 1 μg/ml of puromycin was added for 3 days before adding Poly(I:C) for release. Cells were harvested for western blotting. Rabbit antibodies against STX3 (1:1000; ab4113, Abcam), S23 (1:1000; 111202, SYSY), STX4 (1:1000; 110043, SYSY), V1/2/3 (1:1000), and V2 (1:1000; 104202, SYSY) were used. Validated sequences for used shRNA lentiviruses were the following:

- NM_004781.V3:CCGGGACACCTGCAAGTGCAGCTTTTTG
- NM_003736.V1:V8:CCCGGATCTGGAAGCCACATCTGAGCTCGAGC
- NM_003825.S23:CCCGGCAAGCCTTATAAGACACATCTCGAGC
- NM_004782.S29:GTACCCGGCTTAGAAGACGTGATACCTC
- NM_004177.STX3:CCGGGCACCAGAAGATGATAATTCTCAG
- NM_004604.STX4:CCGGGCTGACAGCACCCTTCTTCTCAG
- NM_003761.V8:NM_004604,STX4:GGGCTGCACGACATATTCACTTTCTCGAG
- NM_004177,STX3:CCGGGCACCAGAAGATGATAATTCTCAG
- NM_004604.STX4:CCGGGCTGACAGCACCCTTCTTCTCAG
- NM_004781.V3:CCGGGACACCTGCAAGTGCAGCTTTTTG
- NM_003736.V1:V8:CCCGGATCTGGAAGCCACATCTGAGCTCGAGC
- NM_003825.S23:CCCGGCAAGCCTTATAAGACACATCTCGAGC
- NM_004782.S29:GTACCCGGCTTAGAAGACGTGATACCTC
- NM_004177,STX3:CCGGGCACCAGAAGATGATAATTCTCAG
- NM_004604,STX4:CCGGGCTGACAGCACCCTTCTTCTCAG

Data availability statement

Datasets related to this article can be found at https://www.ncbi.nlm.nih.gov/gds/ hosted by GEO database (accession number GSE129346).

ORCIDs

- Jianghu Meng: https://orcid.org/0000-0002-3107-4200
- Jialin Wang: https://orcid.org/0000-0002-3654-4400
- Joerg Buddenkotte: https://orcid.org/0000-0002-2394-3269
- Timo Buhl: https://orcid.org/0000-0002-3139-129X
- Martin Steinhoff: https://orcid.org/0000-0002-7090-2187

CONFLICT OF INTEREST

The authors state no conflict of interest.
REFERENCES

