What Have We Learned from GWAS for Atopic Dermatitis?

Sara J. Brown

GWASs have revealed multiple loci associated with atopic dermatitis (AD). Some have confirmed pre-existing knowledge, including the role of skin barrier and type 2 inflammation in AD pathogenesis, whereas others have provided newer insights, including evidence of autoimmunity and previously unrecognized genes controlling epidermal differentiation. The majority of risk loci are in intergenic regions for which functional mechanism(s) remain unknown. These loci require detailed molecular studies carried out in cells and tissues of relevance to AD. Genomic findings to date account for ~30% of AD heritability, therefore, considerable further work is needed to fully understand individual risk.

Journal of Investigative Dermatology (2021) 141, 19–22; doi:10.1016/j.jid.2020.05.100

An introduction to GWAS

A GWAS aims to identify regions of the genome that are associated with a specific trait or disease (https://ghr.nlm.nih.gov/primer/genomicresearch/gwastudies). The technique compares the frequency of SNPs and other types of variants (e.g., deletions and insertions) between cases and controls, similar to a massive case-control study. Large numbers of variants are assessed (1–2 million may be screened directly and many more by imputation), sampling regions across the whole genome, and large numbers (thousands-tens of thousands) of cases and controls are needed to achieve sufficient statistical power. Results may be summarized in the form of a Manhattan plot (Figure 1). Complex traits result from the interactions of multiple genetic effects, many of which have small effect sizes. GWAS is a feasible approach for the study of common complex traits because a sufficient sample size can be obtained. The effect sizes detected by GWAS can range from odds ratio (OR) >2 (i.e., risk more than doubled) to very small effect sizes (OR 1.1 or lower, i.e., <10% increased risk).

GWAS applied to atopic dermatitis

Atopic dermatitis (AD) is a common (affecting 0.2–24.6% of children [Brown et al., 2008; Odhiambo et al., 2009] and up to 10% of adults [Bieber, 2008]) and complex trait caused by the interactions of multiple genetic and environmental factors. AD is highly heritable (72–86% concordance in monozygotic twin pairs [Larsen et al., 1986; Schultz Larsen, 1993]), and this provides the rationale for genetic studies. GWAS and GWAS meta-analysis have revealed ~31 loci associated with AD, including four with secondary independent signals (Paternoster et al., 2015). Some AD risk loci have confirmed pre-existing knowledge, including the role of skin barrier and type 2 inflammation in AD pathogenesis; the epidermal differentiation complex on chromosome 1q21.3 includes FLG encoding FLG, and the cytokine cluster on chr5q31.1 includes genes encoding IL-13 and IL-4 (Figure 1). Other loci have provided newer insights, including evidence for autoimmunity (Paternoster et al., 2015) and a role for Langerhans cells, indicated by variants in a locus on 2p13.3, which affect the expression levels of CD207 (langerin) in the skin (Paternoster et al., 2015).

GWAS of multiple atopic traits has shown a considerable overlap in the genetic risk profiles for AD, asthma, and allergic rhinitis (Ferreira et al., 2019, 2017) attributed predominantly to lymphocyte-mediated immunity. Only two loci indicate AD-specific effects, and these are both within the epidermal differentiation complex on chromosome 1q21.3 attributed to FLG and HRNR-RPTN (Ferreira et al., 2017). An extension to GWAS focusing on protein-coding variants used exome genotype and skin transcriptome data (Mucha et al., 2020). This study identified an additional 12% of AD heritability explained by rare protein-coding variation in genes, including IL4R, IL13, JAK1, JAK2, and TYK2, as well as novel candidate genes DOK2 and CD200R1.

Outstanding questions

The most highly significant peak on chromosome 1q21.3 includes the well-known FLG AD risk (Irvine et al., 2011), but loss-of-function mutations and copy-number variation within FLG (Brown et al., 2012) do not fully explain this strong effect. It is therefore likely that the epidermal differentiation complex, a dense cluster of 63 genes (de Guzman Strong et al., 2010), contains additional risk mechanisms (Paternoster et al., 2015, 2011). Variants in FLG2 may contribute to AD persistence (Margolis et al., 2014), and an in-frame deletion in SPRR3 has been associated with AD (Marenholz et al., 2011), but
additional genetic and epigenetic mechanisms in this highly repetitive and therefore challenging region remain to be defined.

The majority of loci identified by GWAS are in intergenic regions for which functional mechanism(s) remain unknown; these loci require detailed molecular studies carried out in cells and tissues of relevance to AD. One locus for which functional studies have been conducted is on chromosome 11q13.5 (Esparza-Gordillo et al., 2009; O’Regan et al., 2010). The risk SNPs lie in a long intergenic region between EMSY and LRRC32; both are strong candidate genes for AD risk. EMSY encodes a transcriptional regulator previously uncharacterized in the skin. We have shown that EMSY acts as a transcriptional repressor in keratinocytes, controlling multiple aspects of skin barrier formation (Elias et al., 2019). LRRC32 encodes a transmembrane receptor on activated T-regulatory cells that modulates TGF-β activity. There is evidence of a functional variant in LRRC32, which may play a role in AD (Manz et al., 2016). Both skin and blood are likely to be tissues with direct relevance to the pathophysiology of AD. Differential methylation has shown that skin tissue shows greater epigenetic dysregulation than blood from patients with AD (Rodríguez et al., 2014), but the specific cell types implicated in GWAS risk mechanisms remain a question of importance.

As of now, GWAS findings account for <20% of AD heritability (Paternoster et al., 2015), and even with the additional risk attributed to protein-coding variants, ~70% of heritability remains to be explained (Mucha et al., 2020). Considerable further work is therefore needed to fully understand individual risk.

Complementary approaches

Other approaches have used GWAS data to leverage additional understanding of the molecular mechanisms underpinning AD. A genome-wide comparative analysis of AD versus psoriasis showed that opposing mechanisms appear to be more prominent than shared effects for these patterns of skin inflammation (Baurecht et al., 2015). Opposing loci include the T helper type 2 locus control region (chromosome 5q31.1), epidermal differentiation complex (overlying a long noncoding RNA, FLG-AS1), and the major histocompatibility complex (chromosome 6p21-22). Previously unreported pleiotropic alleles with opposing effects on AD and psoriasis risk were identified in PRKRA and ANXA6/TNIP1.

Mendelian randomization (MR) is a statistical analysis technique that uses genetic risk to define phenotypes; this circumvents some of the limitations in conventional epidemiology, including confounding and reverse causation (Budu-Aggrey and Paternoster, 2019). SNPs from GWAS are used in MR as a proxy for AD and other phenotypes, and this approach can be used to distinguish causation from association. MR studies in AD have investigated causal links with prenatal alcohol exposure (Shaheen et al., 2014) and vitamin D levels (Manousaki et al., 2017), each has no causal effect on AD. Another approach has combined MR and multiple-trait colocalization to define cell-specific inflammatory drivers of autoimmune and atopic disease (McGowan et al., 2019).

Longitudinal latent class analysis uses phenotypic data at multiple time-points to define subgroups within the population that exhibit distinct patterns of disease progression.
Future work needed to build on GWAS for the benefit of patients with AD. Additional GWAS are likely to increase understanding, but extensive follow-up work is required to test and validate functional effects at a molecular level before progress can be made in personalized medicine and rational drug design. AD, atopic dermatitis.

Future perspectives

Findings from multiple GWAS studies have re-emphasized the importance of genetic risk mechanisms controlling both skin barrier and immune responses in AD. However, important questions remain (Figure 2). The threshold for statistical significance is necessarily stringent in GWAS because of the extreme multiple testing that occurs (Figure 1). Larger GWAS studies, including hundreds of thousands of cases and controls, could reveal additional risk loci, but each new effect size is likely to be small. Gene–gene interaction analysis is also statistically challenging because of the issues of multiple testing, and similarly, whereas gene–environment interactions are likely to be of importance in AD, they are challenging to detect on a genome-wide level. These mechanisms therefore require alternative, more targeted functional assessment (Figure 2).

The majority of GWASs performed to date have used white European and selected Asian populations. The lack of ethnic diversity in genetic research has been highlighted as a critical weakness in the field, not least in terms of equity in access to medical and scientific knowledge but also as a missed opportunity for genetic discovery (Hindorff et al., 2018). The GWAS meta-analysis performed in 2015 was a multiancestry study (Paternoster et al., 2015), but only ~2% of cases and <1% of controls were of African–American ancestry. AD GWAS studies in more diverse ethnicities, including African populations, are ongoing.

It is known that drugs targeting molecules or pathways informed by human genetic studies have an above-average chance of clinical success (Kamb et al., 2013). The genome-wide approach (described above) to define variants in protein-coding regions identified multiple proteins in the IL-13 pathway, and all have been successfully targeted in novel AD treatments (Mucha et al., 2020). Translational genomics, drug development, and personalized medicine will progress in tandem (Figure 2) (Dugger et al., 2018; Zeggini et al., 2019), and dermatological research is poised to be at the forefront of these exciting developments in clinical care.

REFERENCES

