Hospital Anxiety and Depression Scale, and the Dermatology Life Quality Index. It should be noted that the HS-specific QOL outcome instrument, developed by Hidradenitis Suppurativa cORe outcomes set International Collaboration, is still undergoing validation in clinical trials. This study extensively examined pain, a primary domain of HS, with validated patient-reported outcomes (Thorlacius et al., 2018). Weekly subcutaneous injections resulted in highly significant and rapid reduction in pain in a patient population who reported very substantive pain scores at baseline. For all patients treated in both dose groups, there was a mean reduction of 57% in pain scores by week 12.

Regarding the non-responder imputation analysis calculated by the reviewers, group A should be n = 14 (58% achieving HiSCR) because there was only one subject who discontinued without reason and the last observation carried forward responder population was n = 15. Five subjects (one in group A and four in group B) were either lost to follow-up or discontinued without reason. One subject who was lost to follow-up in group B actually completed the study and was assessed for the primary endpoint through visit 13 and missed only the follow-up visit (visit 14). This subject had a positive HiSCR at visit 13.

We are encouraged by the results of this proof of concept clinical trial and look forward to seeing the results of the ongoing, formal, randomized, double blind, placebo-controlled phase 2b study that has enrolled far ahead of schedule.

Data availability statement

No datasets were generated or analyzed for this letter to the editor. Table 1 contains data generated for our previous publication (Gottlieb et al., 2020).

ORCID

Alice B. Gottlieb: http://orcid.org/0000-0002-2927-8618

CONFLICT OF INTEREST

ABG is a consultant to Xbiotech and assisted in the design of this study. ABG currently holds stock options for Xbiotech that she has not used. She is also a consultant and investigator for Novartis’ secukinumab hidradenitis suppurativa study, with all research compensation awarded to the Icahn School of Medicine at Mount Sinai (New York, NY).

ACKNOWLEDGMENTS

Xbiotech funded the clinical trial referred in this article and in the first reference (Gottlieb et al., 2019). All clinical trial income was awarded to the Icahn School of Medicine at Mount Sinai.

REFERENCES

Rapid Capture and Extraction of Sweat for Regional Rate and Cytokine Composition Analysis Using a Wearable Soft Microfluidic System

TO THE EDITOR

Sweat is a rich, heterogeneous biofluid that consists of electrolytes (e.g., sodium, chloride, potassium ions), micronutrients (magnesium ion, calcium ion, iron, vitamin c), metabolites (e.g., glucose, lactate, ammonia, urea), hormones (e.g., cortisol, cytokines), and environmental toxins (e.g., ethanol) (Baker et al., 2009; Baker and Wolfe, 2020). Biomarkers in sweat provide insight about underlying physiological and metabolic processes and exhibit changes related to performance, wellness, and health (Baker and Wolfe, 2020). For example, sweat chloride testing is a well-established and routine clinical tool for cystic fibrosis screening in newborns (Gibson and Cooke, 1959; Mishra et al., 2005). More recently, several studies have demonstrated the efficacy and potential of sweat as a target for monitoring drug levels (e.g., levodopa) for therapeutic dosing (Tai et al., 2019), sweat glucose screening in diabetes management (Lee et al., 2017), ethanol levels to assess alcohol intoxication (Gamella et al., 2014), cortisol levels to monitor stress (Torrente-Rodriguez et al., 2020), and lactate concentrations to track hypoxia (Pribil et al., 2014).

Quantitative analysis of sweat composition and dynamics currently relies on, first, capturing the sweat using disposable gauzes, absorbent pads, or microtubes followed by sample extraction through centrifuge and gravimetric tools and, finally, off-site analysis of the collected samples by leveraging standard laboratory-based...
analytical techniques. Of these, the sweat collection and extraction steps are most prone to introducing errors arising from sample contamination, evaporation, and spillage, which affects measurement accuracy, especially for the analysis of small proteins and cytokines in sweat (Dai et al., 2013; Katchman et al., 2018). Thus, there is a critical need for uncomplicated and accurate wearable devices that can readily capture sweat in a point-of-care setting (Choi et al., 2018; Ray et al., 2019).

Here, we present a soft, skin-interfacing microfluidic patch that facilitates rapid capture and clean extraction of precise volumes of sweat into quantifiable volumes for cytokine analysis. The microfluidic patches were skin mounted on healthy subjects (n = 10) to collect excreted sweat during exposure to heat (40–45 °C) in a controlled environment chamber. The study protocol was approved by the Institutional Review Board of Northwestern University (Evanston, IL) (IRB-STU00208494). Written informed consent was obtained for all subjects. Concentrations of cytokines IL-1α, IL-1RA, and IL-8 were measured across three regions of the arms for each subject diurnally (morning and evening measurements) and on consecutive days (Supplementary Figure S1). These cytokines were chosen because of their direct relevance to inflammatory responses in patients with atopic dermatitis. Sweat samples were analyzed with an immunoassay, thereby introducing a robust wearable platform for tracking sweat rate and inflammation cytokines found in sweat.

Soft, wearable microfluidic devices and extraction platforms serve as a collection, storage, extraction, and measurement system that is well-suited for intimate skin coupling and rapid analysis of biofluids in remote settings. The soft wearable device mounts directly on the skin to achieve a water-tight seal. Figure 1a and Supplementary Figure S2 show an exploded view of the multilayered device, highlighting the intricate geometry and ultrathin, impermeable microchannel layers. This six-layer polymeric design is ultrathin and impermeable to external gases, thereby limiting evaporation over several days. This unique material design is ideal for remote clinical trial and at-home settings, where biosamples may require storage for several hours or days in the absence of biofluid handling equipment. The skin adhesion layer lies on the bottom surface of the device and incorporates a small collection area that facilitates the flow of sweat into an inlet port, which in turn connects to the overlying microchannel. The inlet port is limited in size (1–2 mm), which significantly limits contamination issues owing to sweat-to-skin contact prevalent with more conventional sweat collection devices. Sweat entering the inlet area propagates through the microchannel where it is captured (Figure 1b and c). The length and cross-sectional geometry of the microchannel determine the total volume of sweat captured and sweat rate over a given sweat-collection session. Figure 1d shows three microfluidic patches skin mounted on the forearms of a subject. The magnified view in Figure 1d highlights the key physical features of the patch on the epidermis (e.g., microchannel,
inlet port, outlet port) and the real-time flow of sweat through the microchannel in a way that is visible to clinical staff. The extraction platform is used to rapidly extract the collected sweat samples into cryovials for analysis, without requiring a centrifuge and other expensive handling equipment (Figure 1ea and Figure 1ef and Supplementary Figure S3).

To test the sweat rate dependence of cytokine concentrations, we quantified the volume of sweat collected for each sample. The volumetric range of sweat extracted across multiple subjects was \(10^{\text{10}} - 233 \text{ µL}\). Linear regression analysis demonstrates that the volume of collected sweat does not correlate with concentrations of IL-1\(\alpha\) \((y = -7.96x + 2,762; \text{adjusted } R^2 = 0.082)\) (Top). Linear regression fit for IL-1RA concentration as a function of sweat volume collected \((y = -5.97x + 3,449; \text{adjusted } R^2 = -0.0019)\) (Bottom). Best fits show that cytokine concentrations are not dependent on volume or rate of sweat extraction. (b) Box and whisker plots showing cytokine concentrations pooled across subjects \((n = 10 \text{ subjects})\) and body locations. (c) Box and whisker plots for morning and evening collections for IL-1\(\alpha\) (left) and IL-1RA (right) \((n = 10 \text{ subjects})\). The results show that there are differences as a function of diurnal collection cycles but no differences corresponding to anatomic regions. AM, ante meridiem; PM, post meridiem.

Figure 2. Sweat cytokines rate dependence and concentrations. (a) Linear regression fit for IL-1\(\alpha\) concentration as a function of sweat volume collected \((y = -7.96x + 2,762; \text{adjusted } R^2 = 0.082)\) (Top). Linear regression fit for IL-1RA concentration as a function of sweat volume collected \((y = -5.97x + 3,449; \text{adjusted } R^2 = -0.0019)\) (Bottom). Best fits show that cytokine concentrations are not dependent on volume or rate of sweat extraction. (b) Box and whisker plots showing cytokine concentrations pooled across subjects \((n = 10 \text{ subjects})\) and body locations. (c) Box and whisker plots for morning and evening collections for IL-1\(\alpha\) (left) and IL-1RA (right) \((n = 10 \text{ subjects})\). The results show that there are differences as a function of diurnal collection cycles but no differences corresponding to anatomic regions. AM, ante meridiem; PM, post meridiem.

To test the sweat rate dependence of cytokine concentrations, we quantified the volume of sweat collected for each sample. The volumetric range of sweat extracted across multiple subjects was \(10^{\text{10}} - 233 \text{ µL}\). Linear regression analysis demonstrates that the volume of collected sweat does not correlate with concentrations of IL-1\(\alpha\) \((y = -7.96x + 2,762; \text{adjusted } R^2 = 0.082)\) (Top). Linear regression fit for IL-1RA concentration as a function of sweat volume collected \((y = -5.97x + 3,449; \text{adjusted } R^2 = -0.0019)\) (Bottom). Best fits show that cytokine concentrations are not dependent on volume or rate of sweat extraction. (b) Box and whisker plots showing cytokine concentrations pooled across subjects \((n = 10 \text{ subjects})\) and body locations. (c) Box and whisker plots for morning and evening collections for IL-1\(\alpha\) (left) and IL-1RA (right) \((n = 10 \text{ subjects})\). The results show that there are differences as a function of diurnal collection cycles but no differences corresponding to anatomic regions. AM, ante meridiem; PM, post meridiem.

Because cytokine concentrations in blood plasma have been shown to vary with diurnal cycles (Petrovsky et al., 1998; Vgontzas et al., 2005), we investigated whether a similar phenomenon could be observed with sweat cytokines. Concentrations of IL-1\(\alpha\) and IL-1RA were pooled across three anatomic regions (upper left

<table>
<thead>
<tr>
<th>Cytokine Concentration (pg/ml)</th>
<th>AM</th>
<th>PM</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1(\alpha)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Sweat cytokines rate dependence and concentrations. (a) Linear regression fit for IL-1\(\alpha\) concentration as a function of sweat volume collected \((y = -7.96x + 2,762; \text{adjusted } R^2 = 0.082)\) (Top). Linear regression fit for IL-1RA concentration as a function of sweat volume collected \((y = -5.97x + 3,449; \text{adjusted } R^2 = -0.0019)\) (Bottom). Best fits show that cytokine concentrations are not dependent on volume or rate of sweat extraction. (b) Box and whisker plots showing cytokine concentrations pooled across subjects \((n = 10 \text{ subjects})\) and body locations. (c) Box and whisker plots for morning and evening collections for IL-1\(\alpha\) (left) and IL-1RA (right) \((n = 10 \text{ subjects})\). The results show that there are differences as a function of diurnal collection cycles but no differences corresponding to anatomic regions. AM, ante meridiem; PM, post meridiem.
cytokine concentrations are consistent over days and locations in healthy subjects but could vary with time of day for a given subject (Figure 2b). The relative increases in IL-1α and IL-1RA concentrations in the evening compared with those in the morning indicate diurnal fluctuations in sweat cytokine levels, consistent with previous studies of cytokine plasma and sweat cytokine levels (Katchman et al., 2018; Petrovsky et al., 1998; Vgontzas et al., 2005). Whether such fluctuations serve a skin-specific role or simply reflect variations in plasma concentrations, requires additional testing across larger populations and different disease subgroups, including atopic dermatitis, urticaria, hyperhidrosis, and other autonomic thermal regulation disorders.

Data availability statement
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

ORCIDs
Jeffrey B. Model: http://orcid.org/0000-0003-052-7076
Michael Z. Zhang: http://orcid.org/0000-0002-7485-8101
Adam Leech: http://orcid.org/0000-0003-3943-1097
Weihua Li: http://orcid.org/0000-0001-5660-5082
Melissa S. Seib: http://orcid.org/0000-0002-9528-0118
Shulin Chen: http://orcid.org/0000-0002-0280-1536
Jessica Wallace: http://orcid.org/0000-0002-2654-7149
Michael H. Shin: http://orcid.org/0000-0002-8803-6862
Amay J. Bandodkar: http://orcid.org/0000-0002-1792-1506
Jungil Choi: http://orcid.org/0000-0002-3659-8978
Amy S. Paller: http://orcid.org/0000-0001-6187-6549
John A. Rogers: http://orcid.org/0000-0002-2980-3961
Shuai Xu: http://orcid.org/0000-0003-3560-6945

CONFLICT OF INTEREST
AJA, JBM, SPL, AL, WL, NR, MSS, SC, JW, JAR, and RG are cofounders and/or employees of Epicore Biosystems, Cambridge, MA, a company that pursues commercialization of microfluidic devices for wearable applications. The remaining authors state no conflict of interest.

ACKNOWLEDGMENTS
This research was funded by LEO Science & Tech Hub. This work utilized the Northwestern University Micro/Nano Fabrication Facility.

AUTHOR CONTRIBUTIONS
Conceptualization: AJA, JBM, SPL, JAR, ASP, SX, RG; Data Curation: AJA, MZZ, SPL; Formal Analysis: AJA, MZZ, SPL, RG; Investigation: WL, SC, JC, AJA, MSS, SPL, AJB, RG; Methodology: JBM, AL, NR, JW; Writing - Original Draft Preparation: AJA, MZZ, RG; Writing - Review and Editing: AJA, JBM, SPL, NR, MZZ, MSS, AJB, JW, JAR, ASP, SX, RG

Alexander J. Aranyosi1,2,3,9, Jeffrey B. Model1,2,3,9, Michael Z. Zhang4,9, Stephen P. Lee1,2,3, Adam Leech1, Weihua Li1,2,3, Melissa S. Seib1, Shulin Chen1,2,3, Nikolas Reny1, Jessica Wallace1, Michael H. Shin4, Amay J. Bandodkar2,3,5, Jungil Choi6, Amy S. Paller1,4, John A. Rogers2,3,5,7,8, Shuai Xu1,2,4,7, and Roozbeh Ghaffari1,2,3,7,8,*

1Epicore Biosystems, Cambridge, Massachusetts, USA; 2Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois, USA; 3Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois, USA; 4Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; 5Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA; 6School of Mechanical Engineering, Kookmin University, Seoul, Republic of Korea; 7Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA; and 8Institute for Innovations in Development Science, Northwestern University, Evanston, Illinois USA

*These authors contributed equally to this work.
*Corresponding author e-mail: rooz@northwestern.edu

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at www.jidonline.org, and at https://doi.org/10.1016/j.jid.2020.05.107.

REFERENCES

Risk and Association of HLA Alleles with Methimazole-Induced Cutaneous Adverse Reactions in Chinese Han Population

TO THE EDITOR

Methimazole (MMI) is a widely used antithyroid drug, which inhibits thyroid hormone synthesis by interfering with the activity of thyroid peroxidase (Cooper, 2005). However, MMI is sometimes associated with cutaneous adverse drug reactions (cADRs), varying from urticaria and maculopapular eruption to severe reactions such as drug-induced hypersensitivity syndrome (Burch and Cooper, 2015; Ozaki et al., 2005). MMI-induced cADRs cannot always be predicted and sometimes could be life-threatening, requiring or prolonging hospitalization, impeding proper treatment, and increasing treatment costs considerably.

The pathogenesis of MMI-induced cADRs remains unclear. In recent years, HLA alleles have been discovered as valid pharmacogenetic markers for the prediction of adverse drug reactions (Negrini and Becquemont, 2017). Some studies have reported that MMI-induced agranulocytosis was strongly associated with HLA-B*38:02 in Chinese and HLA-B*27:05 in European populations (Chen et al., 2015; Hallberg et al., 2016). However, no study has been reported concerning the association between MMI-induced cADRs and HLA alleles.

In this study, we enrolled 21 Chinese patients with MMI-induced cADRs (15 for first stage and 6 for second stage) and characterized the genotypes of four HLA loci (A, B, C, DRB1, and DQB1), varying from urticaria and maculopapular eruption to severe reactions such as drug-induced hypersensitivity syndrome. Informed consent was written by all participants. The detailed clinical characteristics and HLA genotypes of the MMI-induced cADRs are listed in Supplementary Tables S1 and S2. To assess whether there was any risk HLA allele, which was related to the MMI-induced cADRs, we first used the general Chinese population as control (Zhou et al., 2016). Among all the tested HLA alleles, HLA-DRB1*04:03 and HLA-DQB1*03:02 were significantly enriched in patients with MMI-induced cADRs (Supplementary Table S3).

Genetic predisposition is an important underlying cause of Graves’ disease, and association of some HLA alleles with Graves’ disease has been reported previously. Then, we further performed HLA-DRB1 and DQB1 genotyping in 105 MMI tolerants (78 for first stage and 27 for second stage) to validate that the risk HLA allele was associated with cADRs rather than with the Graves’ disease (Table 1). Notably, HLA-DRB1*04:03 was present in 52.4% (8 of 15 and 3 of 6) of the patients with MMI-induced cADRs and was detected in only one of the 105 MMI tolerants (1 of 78 and 0 of 27, corrected P = 2.29×10−3, OR = 114.40), whereas HLA-DQB1*03:02 was present in 66.7% (10 of 15 and 3 of 6) of the patients and was detected in 6 of the 105 tolerants (5 of 78 and 1 of 27, corrected P = 2.71×10−8, OR = 33.00). No differences were observed in other HLA-DRB1 and HLA-DQB1 alleles. These results indicated that HLA-DRB1*04:03 and -DQB1*03:02 were veritably associated with MMI-induced cADRs independent of the background disease and that HLA-DRB1*04:03 presented a stronger risk with MMI-induced cADRs than HLA-DQB1*03:02. The Akaike information criterion for HLA-DRB1*04:03 was 44.8, lower than 53.3 of HLA-DQB1*03:02, which inferred that HLA-DRB1*04:03 might have a more significant influence on MMI-induced cADRs. Strong linkage disequilibrium exist between DRB1*04:03 and DQB1*03:02 in the Chinese Han population (D’ = 1, r² = 0.56) (Zhou et al., 2015). We further performed logistic

Abbreviations: cADR, cutaneous adverse drug reaction; MMI, methimazole

Accepted manuscript published online 1 July 2020; corrected proof published online 9 September 2020 © 2021 The Authors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.
SUPPLEMENTARY MATERIALS AND METHODS

Sweat collection
Sweat was collected from subjects (n = 10) over a 30–45 minutes period on each of two consecutive days (Supplementary Figure S1). For six of these subjects, the collection was conducted at around the same time each day (five in the morning, one in the evening). For the others, sweat was collected during a morning session and evening session. A custom-built microfluidic patch (Supplementary Figure S2a) designed to collect up to ~200 µl of sweat, with minimal evaporation (Supplementary Figure S2b), was applied to the epidermis at multiple anatomic positions on the arms.

Subjects’ left and right inner volar forearms were examined to ensure that they had intact skin. Subjects with excessive hair in patch application areas had this hair trimmed. The left and right volar forearms were cleaned with sterile alcohol wipes and allowed to dry. Three microfluidic patches were applied to the left proximal, left distal, and right proximal volar forearms (Figure 1d).

Subjects entered a sauna to induce sweating. They were allowed to enter and leave ad libitum until 45 minutes had expired or the patches were filled to at least 50 µl, whichever came first. For the first three subjects, sweat was collected until the patches were completely full to ensure that sufficient sweat was available for assay development. Times of patch application and each sauna entry and exit were recorded.

Sweat extraction
Once subjects exited the sauna, patches were removed one at a time and placed on a sweat extraction fixture (Supplementary Figure S3a–c). The exit port of the patch was gently cleaned with an alcohol wipe and positioned over the inlet of a labeled cryovial. Positive pressure applied to the fixture pushed sweat through the channel, out of the exit port and into the cryovial (Supplementary Figure S3d). After closing the vial, the patch was removed and discarded, and the extraction fixture was cleaned with an alcohol wipe. This process was repeated for all patches and subjects for a given collection group.

To determine collected sweat volume, a scale was zeroed with an empty cryovial and the differential weight of each filled vial was measured. When the fluid volume was very low (~15 µl or less), the resulting weight was sometimes zero or negative owing to variation among the vials. Protease and phosphatase inhibitor cocktails were each added at 10% v/v. Vials were then vortexed and stored at −80 °C. When all subject samples had been collected and prepared, the samples were shipped overnight on dry ice to a bioassay laboratory (Pacific BioLabs, Hercules, CA) for analysis.

Assay development and cytokine measurements
Sweat was analyzed using U-PLEX assay kits (Meso Scale Diagnostics, Rockville, MD). Because these kits were not designed specifically for sweat, a series of spike-recovery tests were performed to refine and validate the measurement process. For the resulting process, the samples were rapidly thawed and centrifuged. The supernatant was extracted and diluted in the ratio of 1:2 in PBS to raise the pH. The samples were then processed following the instructions in the kit. Subject samples were analyzed following this same process.

Diurnal cytokine measurements
Three subjects had sweat samples collected during both morning and evening, and the cytokine concentrations were directly compared. In all cases, concentrations of IL-1α and IL-1RA from samples collected in the evening were higher for a given subject. Mean ratios (evening to morning) were 4.2 for IL-1α (range 1.4–5.8) and 4.6 for IL-1RA (range 2.7–5.5). In one subject from whom three samples were collected, concentrations rose from morning to evening on the first day, then fell again the following morning (IL-1α: 857–3,982–603 pg/ml; IL-1RA: 733–3,267–456 pg/ml).

Consecutive day cytokine measurements
To explore the repeatability of sweat cytokine measurements, samples were collected from each subject on two sequential days. For the purpose of this comparison, only samples collected at the same time of the day (both in the morning or both in the evening) were included. Supplementary Figure S1 shows that IL-1α and IL-1RA concentrations were highly correlated across days for healthy subjects. However, the slope of the linear regression fit for IL-1α was less than one (~0.57), indicating a shift in concentrations by a factor of ~2 across a small sample size.
Supplementary Figure S1. Repeatability of cytokine concentration measurements on two consecutive days. Linear regressions for IL-1α (y = 0.57x + 174, R² = 0.929; left panel) and IL-1RA (y = 1.1x - 730, R² = 0.779; right panel) show good correlation across trials.

Supplementary Figure S2. Microfluidic patch with soft, flexible, multilayered design. (a) Schematic drawing showing the six-layer polymeric design of the microfluidic patch. The multiple layers protect biofluids from evaporation effects over multiple days of storage. (b) Optical images of artificial sweat samples stored in the microfluidic patch channel for 3 days, with minimal evaporative effects.
Supplementary Figure S3. Microfluidic extraction fixture. (a) Image of sweat microfluidic patch mounted on microfluidic stage after sweat collection on the skin. Tubing is connected to the microfluidic patch inlet port on stage and to a syringe (not shown). (b) Image of a cryovial aligned with the exit port of the microfluidic patch. (c) Positive pressure applied with a syringe at the inlet port pushed sweat through the microfluidic patch and into the cryovial. (d) Schematic illustration showing a wearable microfluidic patch and extraction platform with sweat (denoted in blue) being collected in a cryovial for off-device analysis.