Journal of Investigative Dermatology Home

Epigenetic Alterations in Keratinocyte Carcinoma

Published:November 15, 2020DOI:
      Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are both derived from epidermal keratinocytes but are phenotypically diverse. To improve the understanding of keratinocyte carcinogenesis, it is critical to understand epigenetic alterations, especially those that govern gene expression. We examined changes to the enhancer-associated histone acetylation mark H3K27ac by mapping matched tumor-normal pairs from 11 patients (five with BCC and six with SCC) undergoing Mohs surgery. Our analysis uncovered cancer-specific enhancers on the basis of differential H3K27ac peaks between matched tumor-normal pairs. We also uncovered biological pathways potentially altered in keratinocyte carcinoma, including enriched epidermal development and Wnt signaling pathways enriched in BCCs and enriched immune response and cell activation pathways in SCCs. We also observed enrichment of transcription factors that implicated SMAD and JDP2 in BCC pathogenesis and FOXP1 in SCC pathogenesis. On the basis of these findings, we prioritized three loci with putative regulation events (FGFR2 enhancer in BCC, intragenic regulation of FOXP1 in SCC, and WNT5A promoter in both subtypes) and validated our findings with published gene expression data. Our findings highlight unique and shared epigenetic alterations in histone modifications and potential regulators for BCCs and SCCs that likely impact the divergent oncogenic pathways, paving the way for targeted drug discoveries.


      BCC (basal cell carcinoma), GO (gene ontology), GREAT (Genomic Regions Enrichment of Annotations Tool), KC (keratinocyte), MsigDB (Molecular Signatures Database), PCA (principal component analysis), SCC (squamous cell carcinoma), TF (transcription factor), Treg (regulatory T cell)
      To read this article in full you will need to make a payment
      Purchase one-time access
      Society Members (SID/ESDR), remember to log in for access.
      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Asgari M.M.
        • Wang W.
        • Ioannidis N.M.
        • Itnyre J.
        • Hoffmann T.
        • Jorgenson E.
        • et al.
        Identification of susceptibility loci for cutaneous squamous cell carcinoma.
        J Invest Dermatol. 2016; 136: 930-937
        • Azzimonti B.
        • Zavattaro E.
        • Provasi M.
        • Vidali M.
        • Conca A.
        • Catalano E.
        • et al.
        Intense Foxp3+ CD25+ regulatory T-cell infiltration is associated with high-grade cutaneous squamous cell carcinoma and counterbalanced by CD8+/Foxp3+ CD25+ ratio.
        Br J Dermatol. 2015; 172: 64-73
        • Bottomley M.J.
        • Thomson J.
        • Harwood C.
        • Leigh I.
        The role of the immune system in cutaneous squamous cell carcinoma.
        Int J Mol Sci. 2019; 20: 2009
        • Brinkhuizen T.
        • van den Hurk K.
        • Winnepenninckx V.J.L.
        • de Hoon J.P.
        • van Marion A.M.
        • Veeck J.
        • et al.
        Epigenetic changes in basal cell carcinoma affect SHH and WNT signaling components.
        PLoS One. 2012; 7: e51710
        • Brown V.L.
        • Harwood C.A.
        • Crook T.
        • Cronin J.G.
        • Kelsell D.P.
        • Proby C.M.
        p16INK4a and p14ARF tumor suppressor genes are commonly inaivated in cutaneous squamous cell carcinoma.
        J Invest Dermatol. 2004; 122: 1284-1292
        • Chahal H.S.
        • Wu W.
        • Ransohoff K.J.
        • Yang L.
        • Hedlin H.
        • Desai M.
        • et al.
        Genome-wide association study identifies 14 novel risk alleles associated with basal cell carcinoma.
        Nat Commun. 2016; 7: 12510
        • Clark R.A.
        • Huang S.J.
        • Murphy G.F.
        • Mollet I.G.
        • Hijnen D.
        • Muthukuru M.
        • et al.
        Human squamous cell carcinomas evade the immune response by down-regulation of vascular E-selectin and recruitment of regulatory T cells.
        J Exp Med. 2008; 205: 2221-2234
        • Crowe D.L.
        • Shuler C.F.
        Increased cdc2 and cdk2 kinase activity by retinoid X receptor gamma-mediated transcriptional down-regulation of the cyclin-dependent kinase inhibitor p21Cip1/WAF1 correlates with terminal differentiation of squamous cell carcinoma lines.
        Cell Growth Differ. 1998; 9: 619-627
        • Czyz M.
        Fibroblast growth factor receptor signaling in skin cancers.
        Cells. 2019; 8: 540
        • Davis C.A.
        • Hitz B.C.
        • Sloan C.A.
        • Chan E.T.
        • Davidson J.M.
        • Gabdank I.
        • et al.
        The Encyclopedia of DNA elements (ENCODE): data portal update.
        Nucleic Acids Res. 2018; 46: D794-D801
        • DO Carmo N.G.
        • Sakamoto L.H.
        • Pogue R.
        • DO Couto Mascarenhas C.
        • Passos S.K.
        • Felipe M.S.
        • et al.
        Altered expression of PRKX, WNT3 and WNT16 in human nodular basal cell carcinoma.
        Anticancer Res. 2016; 36: 4545-4551
        • ENCODE Project Consortium
        An integrated encyclopedia of DNA elements in the human genome.
        Nature. 2012; 489: 57-74
        • Goldberg M.
        • Rummelt C.
        • Laerm A.
        • Helmbold P.
        • Holbach L.M.
        • Ballhausen W.G.
        Epigenetic silencing contributes to frequent loss of the fragile histidine triad tumour suppressor in basal cell carcinomas.
        Br J Dermatol. 2006; 155: 1154-1158
        • Heinz S.
        • Benner C.
        • Spann N.
        • Bertolino E.
        • Lin Y.C.
        • Laslo P.
        • et al.
        Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities.
        Mol Cell. 2010; 38: 576-589
        • Kretzschmar K.
        • Clevers H.
        Wnt/β-catenin signaling in adult mammalian epithelial stem cells.
        Dev Biol. 2017; 428: 273-282
        • Lang C.M.R.
        • Chan C.K.
        • Veltri A.
        • Lien W.H.
        Wnt signaling pathways in keratinocyte carcinomas.
        Cancers (Basel). 2019; 11: 1216
        • Leishman E.
        • Howard J.M.
        • Garcia G.E.
        • Miao Q.
        • Ku A.T.
        • Dekker J.D.
        • et al.
        Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18.
        Development. 2013; 140: 3809-3818
        • Liyanage U.E.
        • Law M.H.
        • Han X.
        • An J.
        • Ong J.S.
        • Gharahkhani P.
        • et al.
        Combined analysis of keratinocyte cancers identifies novel genome-wide loci.
        Hum Mol Genet. 2019; 28: 3148-3160
        • Love M.I.
        • Huber W.
        • Anders S.
        Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
        Genome Biol. 2014; 15: 550
        • Lu L.
        • Barbi J.
        • Pan F.
        The regulation of immune tolerance by FOXP3.
        Nat Rev Immunol. 2017; 17: 703-717
        • McLean C.Y.
        • Bristor D.
        • Hiller M.
        • Clarke S.L.
        • Schaar B.T.
        • Lowe C.B.
        • et al.
        Great improves functional interpretation of cis-regulatory regions.
        Nat Biotechnol. 2010; 28: 495-501
        • Murao K.
        • Kubo Y.
        • Ohtani N.
        • Hara E.
        • Arase S.
        Epigenetic abnormalities in cutaneous squamous cell carcinomas: frequent inactivation of the RB1/p16 and p53 pathways.
        Br J Dermatol. 2006; 155: 999-1005
        • Noubissi F.K.
        • Yedjou C.G.
        • Spiegelman V.S.
        • Tchounwou P.B.
        Cross-talk between Wnt and hh signaling pathways in the pathology of basal cell carcinoma.
        Int J Environ Res Public Health. 2018; 15: 1442
        • Pinello L.
        • Farouni R.
        • Yuan G.C.
        Haystack: systematic analysis of the variation of epigenetic states and cell-type specific regulatory elements.
        Bioinformatics. 2018; 34: 1930-1933
        • Ramírez F.
        • Ryan D.P.
        • Grüning B.
        • Bhardwaj V.
        • Kilpert F.
        • Richter A.S.
        • et al.
        deepTools2: a next generation web server for deep-sequencing data analysis.
        Nucleic Acids Res. 2016; 44: W160-W165
        • Roberts M.R.
        • Asgari M.M.
        • Toland A.E.
        Genome-wide association studies and polygenic risk scores for skin cancer: clinically useful yet?.
        Br J Dermatol. 2019; 181: 1146-1155
        • Rogers H.W.
        • Weinstock M.A.
        • Feldman S.R.
        • Coldiron B.M.
        Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012.
        JAMA Dermatol. 2015; 151: 1081-1086
        • Roncarolo M.G.
        • Gregori S.
        Is FOXP3 a bona fide marker for human regulatory T cells?.
        Eur J Immunol. 2008; 38: 925-927
        • Rook A.
        • Burns T.
        Rook’s Textbook of Dermatology.
        in: 7 ed. Wiley-Blackwell, Hoboken, NJ2004
        • Salto-Tellez M.
        • Peh B.K.
        • Ito K.
        • Tan S.H.
        • Chong P.Y.
        • Han H.C.
        • et al.
        RUNX3 protein is overexpressed in human basal cell carcinomas.
        Oncogene. 2006; 25: 7646-7649
        • Sarin K.Y.
        • Lin Y.
        • Daneshjou R.
        • Ziyatdinov A.
        • Thorleifsson G.
        • Rubin A.
        • et al.
        Genome-wide meta-analysis identifies eight new susceptibility loci for cutaneous squamous cell carcinoma.
        Nat Commun. 2020; 11: 820
        • Teh M.T.
        • Blaydon D.
        • Ghali L.R.
        • Briggs V.
        • Edmunds S.
        • Pantazi E.
        • et al.
        Role for WNT16B in human epidermal keratinocyte proliferation and differentiation.
        J Cell Sci. 2007; 120: 330-339
        • Uhlen M.
        • Zhang C.
        • Lee S.
        • Sjöstedt E.
        • Fagerberg L.
        • Bidkhori G.
        • et al.
        A pathology atlas of the human cancer transcriptome.
        Science. 2017; 357eaan2507
        • Venza I.
        • Visalli M.
        • Tripodo B.
        • De Grazia G.
        • Loddo S.
        • Teti D.
        • et al.
        FOXE1 is a target for aberrant methylation in cutaneous squamous cell carcinoma.
        Br J Dermatol. 2010; 162: 1093-1097
        • Wan J.
        • Dai H.
        • Zhang X.
        • Liu S.
        • Lin Y.
        • Somani A.K.
        • et al.
        Distinct transcriptomic landscapes of cutaneous basal cell carcinomas and squamous cell carcinomas [e-pub ahead of print].
        Genes Dis. 2019; (accessed October 20, 2021)
        • Wang S.P.
        • Tang Z.
        • Chen C.W.
        • Shimada M.
        • Koche R.P.
        • Wang L.H.
        • et al.
        A UTX-MLL4-p300 transcriptional regulatory network coordinately shapes active enhancer landscapes for eliciting transcription.
        Mol Cell. 2017; 67: 308-321.e6
        • Youssef K.K.
        • Lapouge G.
        • Bouvrée K.
        • Rorive S.
        • Brohée S.
        • Appelstein O.
        • et al.
        Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation.
        Nat Cell Biol. 2012; 14: 1282-1294
        • Zhao Z.
        • Shilatifard A.
        Epigenetic modifications of histones in cancer.
        Genome Biol. 2019; 20: 245