Development and might represents a novel target in the treatment of basal cell carcinoma.

Malignant tumors develop due to a balance between oncogenic and tumor suppressive proteins; however, new evidence suggests that oncogenic proteins can act as cancer modulators through regulation of proliferation, migration and survival. We carried out a human clinicopathological analysis of DLX3 expression in 121 cSCCs and 6 benign skin tumors. Correlation analysis showed that tumors of increased pathologic stage had diminished levels of DLX3 expression. Kaplan-Meier analysis of overall survival (OS) revealed a statistically significant difference between patients with high DLX3 expression and low DLX3 expression. We then used a two-stage dimethylmethanesulfonate (DMSA)/D2-0-tetradecanoylphospholipid 13-acetate (TPA) mouse skin carcinogenesis model to test our hypothesis. DMSA treatment with tumor initiator (DMBA) does not produce papillomas without a chemical promoter (TPA). We next examined the effect of DMBA-only treatment on Dvl-1-deficient skin. It was generally accepted that treatment with tumor initiator (DMBA) does not produce papillomas without a chemical promoter (TPA). We next examined the effect of DMBA-only treatment on Dvl-1-deficient skin. Whole transcriptome analysis (RNA-seq) of tumor and skin tissue from our mouse model uncovered a molecular dependence on the proliferation regulators responsible for tumor promotion, supporting a tumor suppressive function for DLX3 in skin.

Glucose-6-phosphate dehydrogenase is a promising predictor of immunotherapy response for Merkel cell carcinoma

M Nakamura 1, K Nagase 1, Y Yoshimoto 1, T Magara 1, J Negishi 1, H Kato 1, T Kobayashi 1, Y Takeda 1, K Nagase 1, Y Tanimura 1, H Wada 1, T Ozawa 1, Y Umemori 1, D Ogata 1, and A Mortil 1, Nagoya Shintu Daigaku, Nagoya, Aichi, Japan, 2 Saga Daigaku, Saga, Saga, Japan, 3 Kanazawa Daigaku, Kanazawa, Ishikawa, Japan, 4 Saitama Ika Daigaku Kokusai Iryo Center, Hieda, Saitama, Japan, 5 Gunma Daigaku, Maebashi, Gunma, Japan, 6 Yokohama Shintu Daigaku, Yokohama, Kanagawa, Japan, 7 Osaka Shintu Daigaku, Osaka, Osaka, Japan, 8 Nagasaki Sekiijuku Byoin, Nagasaki, Nagata, Japan, and 9 Saitama Ika Daigaku, Iruma-gun, Saitama, Japan

Glucose-6-phosphate dehydrogenase (G6PD) is involved in T cell function and suggests that increased expression of G6PD can predict the immune therapy response. That negatively correlated with immune activation and PD-L1 levels and could be used to predict the immunotherapy response.