EphA2 is a novel regulator of autolysosome recycling at end-stage autophagy and a key regulator in epithelial proliferation.

During pregnancy, the skin undergoes significant changes due to increased levels of estrogen and progesterone, which result in the formation of stretch marks. These marks are a result of excessive skin stretching and are more common in pregnancy due to the rapid growth of the abdomen. The formation of stretch marks is an example of the impact of pregnancy on skin properties, which can be quantitatively assessed using various methods.

The study quantified the variations of skin properties on the abdomen along pregnancy time. Stretch mark formation. A future study will compare women at different stages of pregnancy to study the impact of pregnancy on skin properties of women at 8 months of pregnancy are not homogeneous on the abdomen, significantly correlated while others are independent. This pilot study demonstrated that the skin biophysical parameters of the abdomen drastically during pregnancy and that these properties remain altered 4 months after delivery. The aim of this pilot study is to perform a mapping of skin biophysical parameters if a specific area is more affected. The application of molecular profiling techniques, typically performed on punch biopsies, has been an important recent advance in skin research. This has enhanced the understanding of the skin's regulatory and its association with autolysosome. Thus, we conclude that upregulation of EphA2 in the "activated" epidermis contributes to enhanced autophagy and consequently a hyperproliferative state.

Mapping of the biophysical properties of pregnant women abdomen skin: A pilot study

During pregnancy, the skin undergoes significant changes due to increased levels of estrogen and progesterone, which result in the formation of stretch marks. These marks are a result of excessive skin stretching and are more common in pregnancy due to the rapid growth of the abdomen. The formation of stretch marks is an example of the impact of pregnancy on skin properties, which can be quantitatively assessed using various methods.

The study quantified the variations of skin properties on the abdomen along pregnancy time. Stretch mark formation. A future study will compare women at different stages of pregnancy to study the impact of pregnancy on skin properties of women at 8 months of pregnancy are not homogeneous on the abdomen, significantly correlated while others are independent. This pilot study demonstrated that the skin biophysical parameters of the abdomen drastically during pregnancy and that these properties remain altered 4 months after delivery. The aim of this pilot study is to perform a mapping of skin biophysical parameters if a specific area is more affected. The application of molecular profiling techniques, typically performed on punch biopsies, has been an important recent advance in skin research. This has enhanced the understanding of the skin's regulatory and its association with autolysosome. Thus, we conclude that upregulation of EphA2 in the "activated" epidermis contributes to enhanced autophagy and consequently a hyperproliferative state.

Research showed that the activity of dynamin1 (one of key players in autolysosome recycling at end-stage autophagy) and its association with autolysosomes is inhibited by PDL1/PKc pathway in HEKs. EphA2 affects autolysosome recycling via inhibiting PDL1/PKc signaling and thus ensuring dynamin1 activity and its association with autolysosome. Thus, we conclude that upregulation of EphA2 in the "activated" epidermis contributes to enhanced autophagy and consequently a hyperproliferative state.