Advertisement
Journal of Investigative Dermatology Home

Inhibition of PAI-1 Blocks PD-L1 Endocytosis and Improves the Response of Melanoma Cells to Immune Checkpoint Blockade

      Immune checkpoint molecules, especially PD-1 and its ligand PD-L1, act as a major mechanism of cancer immune evasion. Although anti–PD-1/PD-L1 monotherapy increases therapeutic efficacy in melanoma treatment, only a subset of patients exhibits long-term tumor remission, and the underlying mechanism of resistance to PD-1/PD-L1 inhibitors remains unclear. In this study, we demonstrated that cell surface retention of PD-L1 is inversely correlated with PAI-1 expression in vitro, in vivo, and in clinical specimens. Moreover, extracellular PAI-1 induced the internalization of surface-expressed PD-L1 by triggering clathrin-mediated endocytosis. The endocytosed PD-L1 was transported to lysosomes for degradation by endolysosomal systems, resulting in the reduction of surface PD-L1. Notably, inhibition of PAI-1 by pharmacological inhibitor with tiplaxtinin led to elevated PD-L1 expression on the plasma membrane, both in vitro and in vivo. Strikingly, targeting PAI-1 by tiplaxtinin treatment synergizes with anti–PD-L1 immune checkpoint blockade therapy in a syngeneic murine model of melanoma. Our findings demonstrate a role for PAI-1 activity in immune checkpoint modulation by promoting surface PD-L1 for lysosomal degradation and provides an insight into the combination of PAI-1 inhibition and anti–PD-L1 immunotherapy as a promising therapeutic regimen for melanoma treatment.

      Abbreviations:

      CAV (caveolin), CLA (clathrin), siPai-1 (Pai-1 small interfering RNA), siRNA (small interfering RNA), TPX (tiplaxtinin)
      To read this article in full you will need to make a payment
      Purchase one-time access
      Society Members (SID/ESDR), remember to log in for access.
      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bajou K.
        • Masson V.
        • Gerard R.D.
        • Schmitt P.M.
        • Albert V.
        • Praus M.
        • et al.
        The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies.
        J Cell Biol. 2001; 152: 777-784
        • Bajou K.
        • Peng H.
        • Laug W.E.
        • Maillard C.
        • Noel A.
        • Foidart J.M.
        • et al.
        Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis.
        Cancer Cell. 2008; 14: 324-334
        • Burr M.L.
        • Sparbier C.E.
        • Chan Y.C.
        • Williamson J.C.
        • Woods K.
        • Beavis P.A.
        • et al.
        CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity.
        Nature. 2017; 549: 101-105
        • Cao C.
        • Lawrence D.A.
        • Li Y.
        • Von Arnim C.A.
        • Herz J.
        • Su E.J.
        • et al.
        Endocytic receptor LRP together with tPA and PAI-1 coordinates Mac-1-dependent macrophage migration.
        EMBO J. 2006; 25: 1860-1870
        • Cartier-Michaud A.
        • Malo M.
        • Charrière-Bertrand C.
        • Gadea G.
        • Anguille C.
        • Supiramaniam A.
        • et al.
        Matrix-bound PAI-1 supports cell blebbing via RhoA/ROCK1 signaling.
        PloS One. 2012; 7: e32204
        • Chew H.Y.
        • De Lima P.O.
        • Gonzalez Cruz J.L.
        • Banushi B.
        • Echejoh G.
        • Hu L.
        • et al.
        Endocytosis inhibition in humans to improve responses to ADCC-mediating antibodies.
        Cell. 2020; 180: 895-914.e27
        • Chillà A.
        • Margheri F.
        • Biagioni A.
        • Del Rosso M.
        • Fibbi G.
        • Laurenzana A.
        Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis.
        J Exp Clin Cancer Res. 2018; 37: 74
        • Conese M.
        • Nykjaer A.
        • Petersen C.M.
        • Cremona O.
        • Pardi R.
        • Andreasen P.A.
        • et al.
        Alpha-2 macroglobulin receptor/Ldl receptor-related protein(Lrp)-dependent internalization of the urokinase receptor.
        J Cell Biol. 1995; 131: 1609-1622
        • Daniel J.A.
        • Chau N.
        • Abdel-Hamid M.K.
        • Hu L.
        • von Kleist L.
        • Whiting A.
        • et al.
        Phenothiazine-derived antipsychotic drugs inhibit dynamin and clathrin-mediated endocytosis.
        Traffic. 2015; 16: 635-654
        • Daud A.I.
        • Wolchok J.D.
        • Robert C.
        • Hwu W.J.
        • Weber J.S.
        • Ribas A.
        • et al.
        Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma.
        J Clin Oncol. 2016; 34: 4102-4109
        • Deng S.
        • Zhou X.
        • Xu J.
        Checkpoints under traffic control: from and to organelles.
        Adv Exp Med Biol. 2020; 1248: 431-453
        • Dong H.
        • Strome S.E.
        • Salomao D.R.
        • Tamura H.
        • Hirano F.
        • Flies D.B.
        • et al.
        Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion [published correction appears in Nat Med 2002;8:1039].
        Nat Med. 2002; 8: 793-800
        • Eikawa S.
        • Nishida M.
        • Mizukami S.
        • Yamazaki C.
        • Nakayama E.
        • Udono H.
        Immune-mediated antitumor effect by type 2 diabetes drug, metformin.
        Proc Natl Acad Sci USA. 2015; 112: 1809-1814
        • Fang H.
        • Placencio V.R.
        • DeClerck Y.A.
        Protumorigenic activity of plasminogen activator inhibitor-1 through an antiapoptotic function.
        J Natl Cancer Inst. 2012; 104: 1470-1484
        • Guo L.
        • Wei R.
        • Lin Y.
        • Kwok H.F.
        Clinical and recent patents applications of PD-1/PD-L1 targeting immunotherapy in cancer treatment-current progress, strategy, and future perspective.
        Front Immunol. 2020; 11: 1508
        • Hennan J.K.
        • Morgan G.A.
        • Swillo R.E.
        • Antrilli T.M.
        • Mugford C.
        • Vlasuk G.P.
        • et al.
        Effect of tiplaxtinin (PAI-039), an orally bioavailable PAI-1 antagonist, in a rat model of thrombosis.
        J Thromb Haemost. 2008; 6: 1558-1564
        • Isogai C.
        • Laug W.E.
        • Shimada H.
        • Declerck P.J.
        • Stins M.F.
        • Durden D.L.
        • et al.
        Plasminogen activator inhibitor-1 promotes angiogenesis by stimulating endothelial cell migration toward fibronectin.
        Cancer Res. 2001; 61: 5587-5594
        • Jaiswal R.K.
        • Varshney A.K.
        • Yadava P.K.
        Diversity and functional evolution of the plasminogen activator system.
        Biomed Pharmacother. 2018; 98: 886-898
        • Joseph S.R.
        • Gaffney D.
        • Barry R.
        • Hu L.
        • Banushi B.
        • Wells J.W.
        • et al.
        An ex vivo human tumor assay shows distinct patterns of EGFR trafficking in squamous cell carcinoma correlating to therapeutic outcomes.
        J Invest Dermatol. 2019; 139: 213-223
        • Kubala M.H.
        • DeClerck Y.A.
        The plasminogen activator inhibitor-1 paradox in cancer: a mechanistic understanding.
        Cancer Metastasis Rev. 2019; 38: 483-492
        • Kubala M.H.
        • Punj V.
        • Placencio-Hickok V.R.
        • Fang H.
        • Fernandez G.E.
        • Sposto R.
        • et al.
        Plasminogen activator inhibitor-1 promotes the recruitment and polarization of macrophages in cancer.
        Cell Rep. 2018; 25: 2177-2191.e7
        • Larkin J.
        • Chiarion-Sileni V.
        • Gonzalez R.
        • Grob J.J.
        • Cowey C.L.
        • Lao C.D.
        • et al.
        Combined nivolumab and ipilimumab or monotherapy in untreated melanoma [published correction appears in N Engl J Med 2018;379:2185].
        N Engl J Med. 2015; 373: 23-34
        • Li C.W.
        • Lim S.O.
        • Chung E.M.
        • Kim Y.S.
        • Park A.H.
        • Yao J.
        • et al.
        Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1.
        Cancer Cell. 2018; 33: 187-201.e10
        • Li S.
        • Wei X.
        • He J.
        • Tian X.
        • Yuan S.
        • Sun L.
        Plasminogen activator inhibitor-1 in cancer research.
        Biomed Pharmacother. 2018; 105: 83-94
        • Manzanares D.
        • Ceña V.
        Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell.
        Pharmaceutics. 2020; 12: 371
        • Masuda T.
        • Hattori N.
        • Senoo T.
        • Akita S.
        • Ishikawa N.
        • Fujitaka K.
        • et al.
        SK-216, an inhibitor of plasminogen activator inhibitor-1, limits tumor progression and angiogenesis.
        Mol Cancer Ther. 2013; 12: 2378-2388
        • McMahon G.A.
        • Petitclerc E.
        • Stefansson S.
        • Smith E.
        • Wong M.K.
        • Westrick R.J.
        • et al.
        Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis.
        J Biol Chem. 2001; 276: 33964-33968
        • Mellman I.
        • Yarden Y.
        Endocytosis and cancer.
        Cold Spring Harb Perspect Biol. 2013; 5: a016949
        • Nowicki T.S.
        • Hu-Lieskovan S.
        • Ribas A.
        Mechanisms of resistance to PD-1 and PD-L1 blockade.
        Cancer J. 2018; 24: 47-53
        • Olson D.
        • Pöllänen J.
        • Høyer-Hansen G.
        • Rønne E.
        • Sakaguchi K.
        • Wun T.C.
        • et al.
        Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor.
        J Biol Chem. 1992; 267: 9129-9133
        • Pasupuleti N.
        • Grodzki A.C.
        • Gorin F.
        Mis-trafficking of endosomal urokinase proteins triggers drug-induced glioma nonapoptotic cell death.
        Mol Pharmacol. 2015; 87: 683-696
        • Patel S.P.
        • Kurzrock R.
        PD-L1 expression as a predictive biomarker in cancer immunotherapy.
        Mol Cancer Ther. 2015; 14: 847-856
        • Patrinely Jr., J.R.
        • Dewan A.K.
        • Johnson D.B.
        The role of anti-PD-1/PD-L1 in the treatment of skin cancer.
        BioDrugs. 2020; 34: 495-503
        • Pereira F.V.
        • Melo A.C.L.
        • Low J.S.
        • de Castro Í.A.
        • Braga T.T.
        • Almeida D.C.
        • et al.
        Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response.
        Oncotarget. 2018; 9: 25808-25825
        • Placencio V.R.
        • DeClerck Y.A.
        Plasminogen activator inhibitor-1 in cancer: rationale and insight for future therapeutic testing.
        Cancer Res. 2015; 75: 2969-2974
        • Taube J.M.
        • Anders R.A.
        • Young G.D.
        • Xu H.
        • Sharma R.
        • McMiller T.L.
        • et al.
        Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape.
        Sci Transl Med. 2012; 4: 127ra37
        • Wang D.Y.
        • Eroglu Z.
        • Ozgun A.
        • Leger P.D.
        • Zhao S.
        • Ye F.
        • et al.
        Clinical features of acquired resistance to anti-PD-1 therapy in advanced melanoma.
        Cancer Immunol Res. 2017; 5: 357-362
        • Wang H.
        • Yao H.
        • Li C.
        • Shi H.
        • Lan J.
        • Li Z.
        • et al.
        HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity.
        Nat Chem Biol. 2019; 15: 42-50
        • Zhang J.Y.
        • Yan Y.Y.
        • Li J.J.
        • Adhikari R.
        • Fu L.W.
        PD-1/PD-L1 based combinational cancer therapy: icing on the cake.
        Front Pharmacol. 2020; 11: 722
        • Zhu C.
        • Shen H.
        • Zhu L.
        • Zhao F.
        • Shu Y.
        Plasminogen activator inhibitor 1 promotes immunosuppression in human non-small cell lung cancers by enhancing TGF-β1 expression in macrophage.
        Cell Physiol Biochem. 2017; 44: 2201-2211