Advertisement
Journal of Investigative Dermatology Home

Loss of AIRE-Mediated Immune Tolerance and the Skin

  • Pärt Peterson
    Affiliations
    Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
    Search for articles by this author
  • Kai Kisand
    Affiliations
    Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
    Search for articles by this author
  • Nicolas Kluger
    Affiliations
    Department of Dermatology, Allergology and Venereology, Clinicum, University of Helsinki, and Inflammation Center, Helsinki University Hospital, Helsinki, Finland
    Search for articles by this author
  • Annamari Ranki
    Correspondence
    Correspondence: Annamari Ranki, Department of Dermatology, Allergology and Venereology, Inflammation Center, Helsinki University Hospital, P.O. Box 160, Helsinki 00029, Finland.
    Affiliations
    Department of Dermatology, Allergology and Venereology, Clinicum, University of Helsinki, and Inflammation Center, Helsinki University Hospital, Helsinki, Finland
    Search for articles by this author
Published:September 15, 2021DOI:https://doi.org/10.1016/j.jid.2021.04.022
      The core function of the immune response is to distinguish between self and foreign. The multiorgan human autoimmune disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED/autoimmune polyendocrine syndrome type 1) is an example of what happens in the body when central immune tolerance goes astray. APECED revealed the existence and function of the autoimmune regulator gene, which has a central role in the development of tolerance. The discovery of autoimmune regulator was the start of a new period in immunology and in understanding the role of central and peripheral tolerance, also very relevant to many skin diseases as we highlight in this review.

      Abbreviations:

      3D (three-dimensional), AAb (autoantibody), AD (Addison’s disease), AIRE (autoimmune regulator), APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy), CMC (chronic mucocutaneous candidiasis), DSG (desmoglein), K (keratin), KC (keratinocyte), mTEC (medullary thymic epithelial cell), OSCC (oral squamous cell carcinoma), Th17 (T helper 17), Treg (regulatory T cell), TSA (tissue-specific antigen)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'
      Society Members (SID/ESDR), remember to log in for access.

      Subscribe:

      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abramson J.
        • Giraud M.
        • Benoist C.
        • Mathis D.
        Aire's partners in the molecular control of immunological tolerance.
        Cell. 2010; 140: 123-135
        • Ahonen P.
        • Myllärniemi S.
        • Sipilä I.
        • Perheentupa J.
        Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients.
        N Engl J Med. 1990; 322: 1829-1836
        • Akiyama T.
        • Shimo Y.
        • Yanai H.
        • Qin J.
        • Ohshima D.
        • Maruyama Y.
        • et al.
        The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance.
        Immunity. 2008; 29: 423-437
        • Anderson M.S.
        • Su M.A.
        AIRE expands: new roles in immune tolerance and beyond.
        Nat Rev Immunol. 2016; 16: 247-258
        • Anderson M.S.
        • Venanzi E.S.
        • Klein L.
        • Chen Z.
        • Berzins S.P.
        • Turley S.J.
        • et al.
        Projection of an immunological self shadow within the thymus by the aire protein.
        Science. 2002; 298: 1395-1401
        • Bakhru P.
        • Zhu M.L.
        • Wang H.H.
        • Hong L.K.
        • Khan I.
        • Mouchess M.
        • et al.
        Combination central tolerance and peripheral checkpoint blockade unleashes antimelanoma immunity.
        JCI Insight. 2017; 2: e93265
        • Bansal K.
        • Yoshida H.
        • Benoist C.
        • Mathis D.
        The transcriptional regulator Aire binds to and activates super-enhancers.
        Nat Immunol. 2017; 18: 263-273
        • Bar-Ephraim Y.E.
        • Kretzschmar K.
        • Clevers H.
        Organoids in immunological research.
        Nat Rev Immunol. 2020; 20: 279-293
        • Bastard P.
        • Michailidis E.
        • Hoffmann H.H.
        • Chbihi M.
        • Le Voyer T.
        • Rosain J.
        • et al.
        Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine.
        J Exp Med. 2021; 218e20202486
        • Bastard P.
        • Rosen L.B.
        • Zhang Q.
        • Michailidis E.
        • Hoffmann H.H.
        • Zhang Y.
        • et al.
        Autoantibodies against type I IFNs in patients with life-threatening COVID-19.
        Science. 2020; 370eabd4585
        • Bichele R.
        • Kärner J.
        • Truusalu K.
        • Smidt I.
        • Mändar R.
        • Conti H.R.
        • et al.
        IL-22 neutralizing autoantibodies impair fungal clearance in murine oropharyngeal candidiasis model.
        Eur J Immunol. 2018; 48: 464-470
        • Billingham R.E.
        • Brent L.
        • Medawar P.B.
        Actively acquired tolerance of foreign cells.
        Nature. 1953; 172: 603-606
        • Blechschmidt K.
        • Schweiger M.
        • Wertz K.
        • Poulson R.
        • Christensen H.M.
        • Rosenthal A.
        • et al.
        The mouse Aire gene: comparative genomic sequencing, gene organization, and expression.
        Genome Res. 1999; 9: 158-166
        • Borchers J.
        • Pukkala E.
        • Mäkitie O.
        • Laakso S.
        Patients with APECED have increased early mortality due to endocrine causes, malignancies and infections.
        J Clin Endocrinol Metab. 2020; 105: e2207-e2213
        • Bruserud Ø.
        • Oftedal B.E.
        • Wolff A.B.
        • Husebye E.S.
        AIRE-mutations and autoimmune disease.
        Curr Opin Immunol. 2016; 43: 8-15
        • Capalbo D.
        • Improda N.
        • Esposito A.
        • De Martino L.
        • Barbieri F.
        • Betterle C.
        • et al.
        Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy from the pediatric perspective.
        J Endocrinol Invest. 2013; 36: 903-912
        • Cetani F.
        • Barbesino G.
        • Borsari S.
        • Pardi E.
        • Cianferotti L.
        • Pinchera A.
        • et al.
        A novel mutation of the autoimmune regulator gene in an Italian kindred with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, acting in a dominant fashion and strongly cosegregating with hypothyroid autoimmune thyroiditis.
        J Clin Endocrinol Metab. 2001; 86: 4747-4752
        • Chignola F.
        • Gaetani M.
        • Rebane A.
        • Org T.
        • Mollica L.
        • Zucchelli C.
        • et al.
        The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation.
        Nucleic Acids Res. 2009; 37: 2951-2961
        • Chung B.
        • Montel-Hagen A.
        • Ge S.
        • Blumberg G.
        • Kim K.
        • Klein S.
        • et al.
        Engineering the human thymic microenvironment to support thymopoiesis in vivo.
        Stem Cells. 2014; 32: 2386-2396
        • Clark R.A.
        • Yamanaka K.
        • Bai M.
        • Dowgiert R.
        • Kupper T.S.
        Human skin cells support thymus-independent T cell development.
        J Clin Invest. 2005; 115: 3239-3249
        • Constantine G.M.
        • Lionakis M.S.
        Lessons from primary immunodeficiencies: autoimmune regulator and autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy.
        Immunol Rev. 2019; 287: 103-120
        • Derbinski J.
        • Gäbler J.
        • Brors B.
        • Tierling S.
        • Jonnakuty S.
        • Hergenhahn M.
        • et al.
        Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels.
        J Exp Med. 2005; 202: 33-45
        • Derbinski J.
        • Schulte A.
        • Kyewski B.
        • Klein L.
        Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self.
        Nat Immunol. 2001; 2: 1032-1039
        • Eyerich K.
        • Foerster S.
        • Rombold S.
        • Seidl H.P.
        • Behrendt H.
        • Hofmann H.
        • et al.
        Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22.
        J Invest Dermatol. 2008; 128: 2640-2645
        • Ferré E.M.
        • Rose S.R.
        • Rosenzweig S.D.
        • Burbelo P.D.
        • Romito K.R.
        • Niemela J.E.
        • et al.
        Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy.
        JCI Insight. 2016; 1: e88782
        • Ferré E.M.N.
        • Lionakis M.S.
        An AIREless breath: pneumonitis caused by impaired central immune tolerance.
        Front Immunol. 2021; 11: 609253
        • Finnish-German APECED Consortium
        An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains.
        Nat Genet. 1997; 17: 399-403
        • Fishman D.
        • Kisand K.
        • Hertel C.
        • Rothe M.
        • Remm A.
        • Pihlap M.
        • et al.
        Autoantibody repertoire in APECED patients targets two distinct subgroups of proteins.
        Front Immunol. 2017; 8: 976
        • Giraud M.
        • Yoshida H.
        • Abramson J.
        • Rahl P.B.
        • Young R.A.
        • Mathis D.
        • et al.
        Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells.
        Proc Natl Acad Sci USA. 2012; 109: 535-540
        • Gogas H.
        • Ioannovich J.
        • Dafni U.
        • Stavropoulou-Giokas C.
        • Frangia K.
        • Tsoutsos D.
        • et al.
        Prognostic significance of autoimmunity during treatment of melanoma with interferon.
        N Engl J Med. 2006; 354: 709-718
        • Gotter J.
        • Brors B.
        • Hergenhahn M.
        • Kyewski B.
        Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters.
        J Exp Med. 2004; 199: 155-166
        • Guha M.
        • Saare M.
        • Maslovskaja J.
        • Kisand K.
        • Liiv I.
        • Haljasorg U.
        • et al.
        DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes.
        J Biol Chem. 2017; 292: 6542-6554
        • Gwertzman R.
        • Corey H.
        • Roberti I.
        Autoimmune polyglandular syndrome type I can have significant kidney disease in children including recurrence in renal allograft - a report of two cases.
        Clin Nephrol. 2016; 85: 358-362
        • Haljasorg U.
        • Bichele R.
        • Saare M.
        • Guha M.
        • Maslovskaja J.
        • Kõnd K.
        • et al.
        A highly conserved NF-κB-responsive enhancer is critical for thymic expression of Aire in mice.
        Eur J Immunol. 2015; 45: 3246-3256
        • Hedstrand H.
        • Ekwall O.
        • Olsson M.J.
        • Landgren E.
        • Kemp E.H.
        • Weetman A.P.
        • et al.
        The transcription factors SOX9 and SOX10 are vitiligo autoantigens in autoimmune polyendocrine syndrome type I.
        J Biol Chem. 2001; 276: 35390-35395
        • Heino M.
        • Peterson P.
        • Kudoh J.
        • Nagamine K.
        • Lagerstedt A.
        • Ovod V.
        • et al.
        Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla.
        Biochem Biophys Res Commun. 1999; 257: 821-825
        • Herzig Y.
        • Nevo S.
        • Bornstein C.
        • Brezis M.R.
        • Ben-Hur S.
        • Shkedy A.
        • et al.
        Transcriptional programs that control expression of the autoimmune regulator gene Aire.
        Nat Immunol. 2017; 18: 161-172
        • Hikosaka Y.
        • Nitta T.
        • Ohigashi I.
        • Yano K.
        • Ishimaru N.
        • Hayashi Y.
        • et al.
        The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator.
        Immunity. 2008; 29: 438-450
        • Hobbs R.P.
        • DePianto D.J.
        • Jacob J.T.
        • Han M.C.
        • Chung B.M.
        • Batazzi A.S.
        • et al.
        Keratin-dependent regulation of aire and gene expression in skin tumor keratinocytes.
        Nat Genet. 2015; 47: 933-938
        • Husebye E.S.
        • Perheentupa J.
        • Rautemaa R.
        • Kämpe O.
        Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I.
        J Intern Med. 2009; 265: 514-529
        • Improda N.
        • Capalbo D.
        • Cirillo E.
        • Cerbone M.
        • Esposito A.
        • Pignata C.
        • et al.
        Cutaneous vasculitis in patients with autoimmune polyendocrine syndrome type 1: report of a case and brief review of the literature.
        BMC Pediatr. 2014; 14: 272
        • Irla M.
        • Hugues S.
        • Gill J.
        • Nitta T.
        • Hikosaka Y.
        • Williams I.R.
        • et al.
        Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity.
        Immunity. 2008; 29: 451-463
        • Jokinen M.
        • Edelman S.
        • Krohn K.
        • Kankainen M.
        • Ranki A.
        Neutralizing natural anti-IL-17F autoantibodies protect autoimmune polyendocrine syndrome type 1 (APS-1) patients from asthma.
        Clin Immunol. 2020; 219: 108512
        • Jung K.B.
        • Lee H.
        • Son Y.S.
        • Lee M.O.
        • Kim Y.D.
        • Oh S.J.
        • et al.
        Interleukin-2 induces the in vitro maturation of human pluripotent stem cell-derived intestinal organoids.
        Nat Commun. 2018; 9: 3039
        • Kaleviste E.
        • Rühlemann M.
        • Kärner J.
        • Haljasmägi L.
        • Tserel L.
        • Org E.
        • et al.
        IL-22 paucity in APECED is associated with mucosal and microbial alterations in oral cavity.
        Front Immunol. 2020; 11: 838
        • Kekäläinen E.
        • Tuovinen H.
        • Joensuu J.
        • Gylling M.
        • Franssila R.
        • Pöntynen N.
        • et al.
        A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy.
        J Immunol. 2007; 178: 1208-1215
        • Khan I.S.
        • Mouchess M.L.
        • Zhu M.L.
        • Conley B.
        • Fasano K.J.
        • Hou Y.
        • et al.
        Enhancement of an anti-tumor immune response by transient blockade of central T cell tolerance.
        J Exp Med. 2014; 211: 761-768
        • Kisand K.
        • Bøe Wolff A.S.
        • Podkrajsek K.T.
        • Tserel L.
        • Link M.
        • Kisand K.V.
        • et al.
        Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines.
        J Exp Med. 2010; 207: 299-308
        • Kisand K.
        • Link M.
        • Wolff A.S.
        • Meager A.
        • Tserel L.
        • Org T.
        • et al.
        Interferon autoantibodies associated with AIRE deficiency decrease the expression of IFN-stimulated genes.
        Blood. 2008; 112: 2657-2666
        • Kisand K.
        • Peterson P.
        Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy.
        J Clin Immunol. 2015; 35: 463-478
        • Klarquist J.
        • Eby J.M.
        • Henning S.W.
        • Li M.
        • Wainwright D.A.
        • Westerhof W.
        • et al.
        Functional cloning of a gp100-reactive T-cell receptor from vitiligo patient skin.
        Pigment Cell Melanoma Res. 2016; 29: 379-384
        • Klein L.
        • Klein T.
        • Rüther U.
        • Kyewski B.
        CD4 T cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium.
        J Exp Med. 1998; 188: 5-16
        • Kluger N.
        • Kataja J.
        • Aho H.
        • Rönn A.M.
        • Krohn K.
        • Ranki A.
        Kidney involvement in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy in a Finnish cohort.
        Nephrol Dial Transplant. 2014; 29: 1750-1757
        • Kluger N.
        • Krohn K.
        • Ranki A.
        Absence of some common organ-specific and non-organ-specific autoimmunity in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy.
        Endocr Connect. 2013; 2: 61-68
        • Koh A.S.
        • Kuo A.J.
        • Park S.Y.
        • Cheung P.
        • Abramson J.
        • Bua D.
        • et al.
        Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity.
        Proc Natl Acad Sci USA. 2008; 105: 15878-15883
        • Kont V.
        • Laan M.
        • Kisand K.
        • Merits A.
        • Scott H.S.
        • Peterson P.
        Modulation of Aire regulates the expression of tissue-restricted antigens.
        Mol Immunol. 2008; 45: 25-33
        • Krohn K.
        • Uibo R.
        • Aavik E.
        • Peterson P.
        • Savilahti K.
        Identification by molecular cloning of an autoantigen associated with Addison's disease as steroid 17 alpha-hydroxylase.
        Lancet. 1992; 339: 770-773
        • Kumar V.
        • Pedroza L.A.
        • Mace E.M.
        • Seeholzer S.
        • Cotsarelis G.
        • Condino-Neto A.
        • et al.
        The autoimmune regulator (AIRE), which is defective in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients, is expressed in human epidermal and follicular keratinocytes and associates with the intermediate filament protein cytokeratin 17.
        Am J Pathol. 2011; 178: 983-988
        • Laakso S.M.
        • Laurinolli T.T.
        • Rossi L.H.
        • Lehtoviita A.
        • Sairanen H.
        • Perheentupa J.
        • et al.
        Regulatory T cell defect in APECED patients is associated with loss of naive FOXP3(+) precursors and impaired activated population.
        J Autoimmun. 2010; 35: 351-357
        • Laan M.
        • Kisand K.
        • Kont V.
        • Möll K.
        • Tserel L.
        • Scott H.S.
        • et al.
        Autoimmune regulator deficiency results in decreased expression of CCR4 and CCR7 ligands and in delayed migration of CD4+ thymocytes.
        J Immunol. 2009; 183: 7682-7691
        • LaFlam T.N.
        • Seumois G.
        • Miller C.N.
        • Lwin W.
        • Fasano K.J.
        • Waterfield M.
        • et al.
        Identification of a novel cis-regulatory element essential for immune tolerance.
        J Exp Med. 2015; 212: 1993-2002
        • Lai L.
        • Cui C.
        • Jin J.
        • Hao Z.
        • Zheng Q.
        • Ying M.
        • et al.
        Mouse embryonic stem cell-derived thymic epithelial cell progenitors enhance T-cell reconstitution after allogeneic bone marrow transplantation.
        Blood. 2011; 118: 3410-3418
        • Lai L.
        • Jin J.
        Generation of thymic epithelial cell progenitors by mouse embryonic stem cells.
        Stem Cells. 2009; 27: 3012-3020
        • Landegren N.
        • Sharon D.
        • Freyhult E.
        • Hallgren Å.
        • Eriksson D.
        • Edqvist P.H.
        • et al.
        Proteome-wide survey of the autoimmune target repertoire in autoimmune polyendocrine syndrome type 1.
        Sci Rep. 2016; 6: 20104
        • Lei Y.
        • Ripen A.M.
        • Ishimaru N.
        • Ohigashi I.
        • Nagasawa T.
        • Jeker L.T.
        • et al.
        Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development.
        J Exp Med. 2011; 208: 383-394
        • Liston A.
        • Lesage S.
        • Wilson J.
        • Peltonen L.
        • Goodnow C.C.
        Aire regulates negative selection of organ-specific T cells.
        Nat Immunol. 2003; 4: 350-354
        • Magitta N.F.
        • Pura M.
        • Bøe Wolff A.S.
        • Vanuga P.
        • Meager A.
        • Knappskog P.M.
        • et al.
        Autoimmune polyendocrine syndrome type I in Slovakia: relevance of screening patients with autoimmune Addison’s disease.
        Eur J Endocrinol. 2008; 158: 705-709
        • Malchow S.
        • Leventhal D.S.
        • Lee V.
        • Nishi S.
        • Socci N.D.
        • Savage P.A.
        Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage.
        Immunity. 2016; 44: 1102-1113
        • Martínez-López M.
        • Iborra S.
        • Conde-Garrosa R.
        • Mastrangelo A.
        • Danne C.
        • Mann E.R.
        • et al.
        Microbiota sensing by Mincle-Syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity.
        Immunity. 2019; 50: 446-461.e9
        • Mathis D.
        • Benoist C.
        Aire.
        Annu Rev Immunol. 2009; 27: 287-312
        • Meloni A.
        • Willcox N.
        • Meager A.
        • Atzeni M.
        • Wolff A.S.
        • Husebye E.S.
        • et al.
        Autoimmune polyendocrine syndrome type 1: an extensive longitudinal study in Sardinian patients.
        J Clin Endocrinol Metab. 2012; 97: 1114-1124
        • Metzger T.C.
        • Khan I.S.
        • Gardner J.M.
        • Mouchess M.L.
        • Johannes K.P.
        • Krawisz A.K.
        • et al.
        Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population.
        Cell Rep. 2013; 5: 166-179
        • Meyer S.
        • Woodward M.
        • Hertel C.
        • Vlaicu P.
        • Haque Y.
        • Kärner J.
        • et al.
        AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies.
        Cell. 2016; 166: 582-595
        • Miller J.F.A.P.
        The function of the thymus and its impact on modern medicine.
        Science. 2020; 369eaba2429
        • Murumägi A.
        • Silvennoinen O.
        • Peterson P.
        Ets transcription factors regulate AIRE gene promoter.
        Biochem Biophys Res Commun. 2006; 348: 768-774
        • Murumägi A.
        • Vähämurto P.
        • Peterson P.
        Characterization of regulatory elements and methylation pattern of the autoimmune regulator (AIRE) promoter.
        J Biol Chem. 2003; 278: 19784-19790
        • Nagamine K.
        • Peterson P.
        • Scott H.S.
        • Kudoh J.
        • Minoshima S.
        • Heino M.
        • et al.
        Positional cloning of the APECED gene.
        Nat Genet. 1997; 17: 393-398
        • Nguyen C.T.K.
        • Sawangarun W.
        • Mandasari M.
        • Morita K.I.
        • Harada H.
        • Kayamori K.
        • et al.
        AIRE is induced in oral squamous cell carcinoma and promotes cancer gene expression.
        PLoS One. 2020; 15e0222689
        • Nishikawa Y.
        • Nishijima H.
        • Matsumoto M.
        • Morimoto J.
        • Hirota F.
        • Takahashi S.
        • et al.
        Temporal lineage tracing of Aire-expressing cells reveals a requirement for Aire in their maturation program.
        J Immunol. 2014; 192: 2585-2592
        • Oftedal B.E.
        • Hellesen A.
        • Erichsen M.M.
        • Bratland E.
        • Vardi A.
        • Perheentupa J.
        • et al.
        Dominant mutations in the autoimmune regulator AIRE are associated with common organ-specific autoimmune diseases.
        Immunity. 2015; 42: 1185-1196
        • Org T.
        • Chignola F.
        • Hetényi C.
        • Gaetani M.
        • Rebane A.
        • Liiv I.
        • et al.
        The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression.
        EMBO Rep. 2008; 9: 370-376
        • Ossart J.
        • Moreau A.
        • Autrusseau E.
        • Ménoret S.
        • Martin J.C.
        • Besnard M.
        • et al.
        Breakdown of immune tolerance in AIRE-deficient rats induces a severe autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy-like autoimmune disease.
        J Immunol. 2018; 201: 874-887
        • Parent A.V.
        • Russ H.A.
        • Khan I.S.
        • LaFlam T.N.
        • Metzger T.C.
        • Anderson M.S.
        • et al.
        Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development.
        Cell Stem Cell. 2013; 13: 219-229
        • Perheentupa J.
        Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy.
        J Clin Endocrinol Metab. 2006; 91: 2843-2850
        • Peterson P.
        • Org T.
        • Rebane A.
        Transcriptional regulation by AIRE: molecular mechanisms of central tolerance.
        Nat Rev Immunol. 2008; 8: 948-957
        • Pinto S.
        • Schmidt K.
        • Egle S.
        • Stark H.J.
        • Boukamp P.
        • Kyewski B.
        An organotypic coculture model supporting proliferation and differentiation of medullary thymic epithelial cells and promiscuous gene expression.
        J Immunol. 2013; 190: 1085-1093
        • Proust-Lemoine E.
        • Saugier-Veber P.
        • Wémeau J.L.
        Polyglandular autoimmune syndrome type I.
        Presse Med. 2012; 41: e651-e662
        • Puel A.
        • Cypowyj S.
        • Maródi L.
        • Abel L.
        • Picard C.
        • Casanova J.L.
        Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis.
        Curr Opin Allergy Clin Immunol. 2012; 12: 616-622
        • Rossi S.W.
        • Kim M.Y.
        • Leibbrandt A.
        • Parnell S.M.
        • Jenkinson W.E.
        • Glanville S.H.
        • et al.
        RANK signals from CD4(+)3(-) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla.
        J Exp Med. 2007; 204: 1267-1272
        • Ryan K.R.
        • Lawson C.A.
        • Lorenzi A.R.
        • Arkwright P.D.
        • Isaacs J.D.
        • Lilic D.
        CD4+CD25+ T-regulatory cells are decreased in patients with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy.
        J Allergy Clin Immunol. 2005; 116: 1158-1159
        • Söderbergh A.
        • Myhre A.G.
        • Ekwall O.
        • Gebre-Medhin G.
        • Hedstrand H.
        • Landgren E.
        • et al.
        Prevalence and clinical associations of 10 defined autoantibodies in autoimmune polyendocrine syndrome type I.
        J Clin Endocrinol Metab. 2004; 89: 557-562
        • Su M.A.
        • Giang K.
        • Zumer K.
        • Jiang H.
        • Oven I.
        • Rinn J.L.
        • et al.
        Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire.
        J Clin Invest. 2008; 118: 1712-1726
        • Sun X.
        • Xu J.
        • Lu H.
        • Liu W.
        • Miao Z.
        • Sui X.
        • et al.
        Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo.
        Cell Stem Cell. 2013; 13: 230-236
        • Takahashi H.
        • Iriki H.
        • Mukai M.
        • Kamata A.
        • Nomura H.
        • Yamagami J.
        • et al.
        Autoimmunity and immunological tolerance in autoimmune bullous diseases.
        Int Immunol. 2019; 31: 431-437
        • Träger U.
        • Sierro S.
        • Djordjevic G.
        • Bouzo B.
        • Khandwala S.
        • Meloni A.
        • et al.
        The immune response to melanoma is limited by thymic selection of self-antigens.
        PLoS One. 2012; 7: e35005
        • Uibo R.
        • Perheentupa J.
        • Ovod V.
        • Krohn K.J.
        Characterization of adrenal autoantigens recognized by sera from patients with autoimmune polyglandular syndrome (APS) type I.
        J Autoimmun. 1994; 7: 399-411
        • Vazquez S.E.
        • Ferré E.M.
        • Scheel D.W.
        • Sunshine S.
        • Miao B.
        • Mandel-Brehm C.
        • et al.
        Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide PhIP-Seq.
        Elife. 2020; 9: e55053
        • Wang X.
        • Laan M.
        • Bichele R.
        • Kisand K.
        • Scott H.S.
        • Peterson P.
        Post-Aire maturation of thymic medullary epithelial cells involves selective expression of keratinocyte-specific autoantigens.
        Front Immunol. 2012; 3: 19
        • Wolff A.S.
        • Sarkadi A.K.
        • Maródi L.
        • Kärner J.
        • Orlova E.
        • Oftedal B.E.
        • et al.
        Anti-cytokine autoantibodies preceding onset of autoimmune polyendocrine syndrome type I features in early childhood.
        J Clin Immunol. 2013; 33: 1341-1348
        • Yang S.
        • Fujikado N.
        • Kolodin D.
        • Benoist C.
        • Mathis D.
        Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance.
        Science. 2015; 348: 589-594
        • Zaidi G.
        • Bhatia V.
        • Sahoo S.K.
        • Sarangi A.N.
        • Bharti N.
        • Zhang L.
        • et al.
        Autoimmune polyendocrine syndrome type 1 in an Indian cohort: a longitudinal study.
        Endocr Connect. 2017; 6: 289-296
        • Zhu F.
        • Willette-Brown J.
        • Zhang J.
        • Ferre E.M.N.
        • Sun Z.
        • Wu X.
        • et al.
        NLRP3 inhibition ameliorates severe cutaneous autoimmune manifestations in a mouse model of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy-like disease.
        J Invest Dermatol. 2021; 141: 1404-1415
        • Žumer K.
        • Plemenitaš A.
        • Saksela K.
        • Peterlin B.M.
        Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription.
        Nucleic Acids Res. 2011; 39: 7908-7919