Advertisement
Journal of Investigative Dermatology Home

Genotype‒Structurotype‒Phenotype Correlations in Patients with Pachyonychia Congenita

      Pachyonychia congenita (PC) is a genetic disorder of keratin that presents with nail dystrophy, painful palmoplantar keratoderma, and other clinical manifestations. We investigated the genotype‒structurotype‒phenotype correlations seen with mutations in keratin genes (keratin [K]6A, K6B, K6C, K16, K17) and utilized protein structure modeling of high-frequency mutations to examine the functional importance of keratin structural domains in PC pathogenesis. Participants of the International PC Research Registry underwent genetic testing and completed a standardized survey on their symptoms. Our results support previous reports associating oral leukokeratosis with K6A mutations and cutaneous cysts, follicular hyperkeratosis, and natal teeth with K17 mutations. Painful keratoderma was prominent with K6A and K16 mutations. Nail involvement was most common in patients with K6A mutation and least common in those with K6C mutation. Across keratin subtypes, patients with coil 2B mutations had the greatest impairment in ambulation, and patients with coil 1A mutations reported more emotional issues. Molecular modeling demonstrated that hotspot missense mutations in PC largely disrupted hydrophobic interactions or surface charge. The former may destabilize keratin dimers/tetramers, whereas the latter likely interferes with higher-order keratin filament formation. Understanding the pathologic alterations in keratin structure improves our knowledge of how PC genotype correlates with clinical phenotype, advancing insight into disease pathogenesis and therapeutic development.

      Abbreviations:

      IF (intermediate filament), K (keratin), PC (pachyonychia congenita)
      To read this article in full you will need to make a payment
      Purchase one-time access
      Society Members (SID/ESDR), remember to log in for access.
      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ahn J.
        • Jo I.
        • Kang S.M.
        • Hong S.
        • Kim S.
        • Jeong S.
        • et al.
        Structural basis for lamin assembly at the molecular level.
        Nat Commun. 2019; 10: 3757
        • Baker N.A.
        • Sept D.
        • Joseph S.
        • Holst M.J.
        • McCammon J.A.
        Electrostatics of nanosystems: application to microtubules and the ribosome.
        Proc Natl Acad Sci USA. 2001; 98: 10037-10041
        • Banerjee S.
        • Wu Q.
        • Yu P.
        • Qi M.
        • Li C.
        In silico analysis of all point mutations on the 2B domain of K5/K14 causing epidermolysis bullosa simplex: a genotype-phenotype correlation.
        Mol Biosyst. 2014; 10: 2567-2577
        • Bunick C.G.
        • Milstone L.M.
        The x-ray crystal structure of the keratin 1-keratin 10 helix 2B heterodimer reveals molecular surface properties and biochemical insights into human skin disease.
        J Invest Dermatol. 2017; 137: 142-150
        • Chamcheu J.C.
        • Siddiqui I.A.
        • Syed D.N.
        • Adhami V.M.
        • Liovic M.
        • Mukhtar H.
        Keratin gene mutations in disorders of human skin and its appendages.
        Arch Biochem Biophys. 2011; 508: 123-137
        • Connors J.B.
        • Rahil A.K.
        • Smith F.J.
        • McLean W.H.
        • Milstone L.M.
        Delayed-onset pachyonychia congenita associated with a novel mutation in the central 2B domain of keratin 16.
        Br J Dermatol. 2001; 144: 1058-1062
        • Eldirany S.A.
        • Ho M.
        • Bunick C.G.
        The interface between keratin structurotype and human disease.
        Structure. 2020; 28: 271-273
        • Eldirany S.A.
        • Lomakin I.B.
        • Ho M.
        • Bunick C.G.
        Recent insight into intermediate filament structure.
        Curr Opin Cell Biol. 2021; 68: 132-143
        • Fu T.
        • Leachman S.A.
        • Wilson N.J.
        • Smith F.J.
        • Schwartz M.E.
        • Tang J.Y.
        Genotype-phenotype correlations among pachyonychia congenita patients with K16 mutations.
        J Invest Dermatol. 2011; 131: 1025-1028
        • González-Ramos J.
        • Sendagorta-Cudós E.
        • González-López G.
        • Mayor-Ibarguren A.
        • Feltes-Ochoa R.
        • Herranz-Pinto P.
        Efficacy of botulinum toxin in pachyonychia congenita type 1: report of two new cases.
        Dermatol Ther. 2016; 29: 32-36
        • Hickerson R.P.
        • Leake D.
        • Pho L.N.
        • Leachman S.A.
        • Kaspar R.L.
        Rapamycin selectively inhibits expression of an inducible keratin (K6a) in human keratinocytes and improves symptoms in pachyonychia congenita patients.
        J Dermatol Sci. 2009; 56: 82-88
        • Kerns M.L.
        • Hakim J.M.
        • Lu R.G.
        • Guo Y.
        • Berroth A.
        • Kaspar R.L.
        • et al.
        Oxidative stress and dysfunctional NRF2 underlie pachyonychia congenita phenotypes.
        J Clin Invest. 2016; 126: 2356-2366
        • Kerns M.L.
        • Hakim J.M.C.
        • Zieman A.
        • Lu R.G.
        • Coulombe P.A.
        Sexual dimorphism in response to an NRF2 inducer in a model for pachyonychia congenita.
        J Invest Dermatol. 2018; 138: 1094-1100
        • Leachman S.A.
        • Hickerson R.P.
        • Hull P.R.
        • Smith F.J.
        • Milstone L.M.
        • Lane E.B.
        • et al.
        Therapeutic siRNAs for dominant genetic skin disorders including pachyonychia congenita.
        J Dermatol Sci. 2008; 51: 151-157
        • Leachman S.A.
        • Hickerson R.P.
        • Schwartz M.E.
        • Bullough E.E.
        • Hutcherson S.L.
        • Boucher K.M.
        • et al.
        First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder.
        Mol Ther. 2010; 18: 442-446
        • Lee C.H.
        • Kim M.S.
        • Chung B.M.
        • Leahy D.J.
        • Coulombe P.A.
        Structural basis for heteromeric assembly and perinuclear organization of keratin filaments.
        Nat Struct Mol Biol. 2012; 19: 707-715
        • Lee C.H.
        • Kim M.S.
        • Li S.
        • Leahy D.J.
        • Coulombe P.A.
        Structure-function analyses of a keratin heterotypic complex identify specific keratin regions involved in intermediate filament assembly.
        Structure. 2020; 28: 355-362.e4
        • Lomakin I.B.
        • Hinbest A.J.
        • Ho M.
        • Eldirany S.A.
        • Bunick C.G.
        Crystal structure of keratin 1/10(C401A) 2B heterodimer demonstrates a proclivity for the C-terminus of helix 2B to form higher order molecular contacts.
        Yale J Biol Med. 2020; 93: 3-17
        • McLean W.H.
        • Smith F.J.
        • Cassidy A.J.
        Insights into genotype-phenotype correlation in pachyonychia congenita from the human intermediate filament mutation database.
        J Investig Dermatol Symp Proc. 2005; 10: 31-36
        • Nicolet S.
        • Herrmann H.
        • Aebi U.
        • Strelkov S.V.
        Atomic structure of vimentin coil 2.
        J Struct Biol. 2010; 170: 369-376
        • Parry D.A.
        Hendecad repeat in segment 2A and linker L2 of intermediate filament chains implies the possibility of a right-handed coiled-coil structure.
        J Struct Biol. 2006; 155: 370-374
        • Pettersen E.F.
        • Goddard T.D.
        • Huang C.C.
        • Couch G.S.
        • Greenblatt D.M.
        • Meng E.C.
        • et al.
        UCSF Chimera—a visualization system for exploratory research and analysis.
        J Comput Chem. 2004; 25: 1605-1612
        • Samuelov L.
        • Smith F.J.D.
        • Hansen C.D.
        • Sprecher E.
        Revisiting pachyonychia congenita: a case-cohort study of 815 patients.
        Br J Dermatol. 2020; 182: 738-746
        • Smith F.J.
        Nail that mutation-keratin 17 defect in late-onset pachyonychia.
        J Invest Dermatol. 2004; 122: x-xi
        • Smith F.J.D.
        • Hansen C.D.
        • Hull P.R.
        • Kaspar R.L.
        • McLean W.H.I.
        • O’Tool E.
        • et al.
        Pachyonychia congenita.
        in: Adam M.P. Ardinger H.H. Pagon R.A. Wallace S.E. Bean L.J.H. Mirzaa G. GeneReviews [internet]. University of Washington, Seattle2006
        • Smith F.J.
        • Liao H.
        • Cassidy A.J.
        • Stewart A.
        • Hamill K.J.
        • Wood P.
        • et al.
        The genetic basis of pachyonychia congenita.
        J Investig Dermatol Symp Proc. 2005; 10: 21-30
        • Spaunhurst K.M.
        • Hogendorf A.M.
        • Smith F.J.
        • Lingala B.
        • Schwartz M.E.
        • Cywinska-Bernas A.
        • et al.
        Pachyonychia congenita patients with mutations in KRT6A have more extensive disease compared with patients who have mutations in KRT16.
        Br J Dermatol. 2012; 166: 875-878
        • Swartling C.
        • Karlqvist M.
        • Hymnelius K.
        • Weis J.
        • Vahlquist A.
        Botulinum toxin in the treatment of sweat-worsened foot problems in patients with epidermolysis bullosa simplex and pachyonychia congenita.
        Br J Dermatol. 2010; 163: 1072-1076
        • Swartling C.
        • Vahlquist A.
        Treatment of pachyonychia congenita with plantar injections of botulinum toxin.
        Br J Dermatol. 2006; 154: 763-765
        • Szeverenyi I.
        • Cassidy A.J.
        • Chung C.W.
        • Lee B.T.
        • Common J.E.
        • Ogg S.C.
        • et al.
        The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases.
        Hum Mutat. 2008; 29: 351-360
        • Waterhouse A.
        • Bertoni M.
        • Bienert S.
        • Studer G.
        • Tauriello G.
        • Gumienny R.
        • et al.
        SWISS-MODEL: homology modelling of protein structures and complexes.
        Nucleic Acids Res. 2018; 46: W296-W303
        • Weinberg R.L.
        • Coulombe P.A.
        • Polydefkis M.
        • Caterina M.J.
        Pain mechanisms in hereditary palmoplantar keratodermas.
        Br J Dermatol. 2020; 182: 543-551
        • Wilson A.K.
        • Coulombe P.A.
        • Fuchs E.
        The roles of K5 and K14 head, tail, and R/K L E G E domains in keratin filament assembly in vitro.
        J Cell Biol. 1992; 119: 401-414
        • Wilson N.J.
        • Leachman S.A.
        • Hansen C.D.
        • McMullan A.C.
        • Milstone L.M.
        • Schwartz M.E.
        • et al.
        A large mutational study in pachyonychia congenita.
        J Invest Dermatol. 2011; 131: 1018-1024
        • Xiao S.X.
        • Feng Y.G.
        • Ren X.R.
        • Tan S.S.
        • Li L.
        • Wang J.M.
        • et al.
        A novel mutation in the second half of the keratin 17 1A domain in a large pedigree with delayed-onset pachyonychia congenita type 2.
        J Invest Dermatol. 2004; 122: 892-895
        • Ying Y.
        • Lu L.
        • Banerjee S.
        • Xu L.
        • Zhao Q.
        • Wu H.
        • et al.
        KVarPredDB: a database for predicting pathogenicity of missense sequence variants of keratin genes associated with genodermatoses.
        Hum Genomics. 2020; 14: 45
        • Zhao Y.
        • Gartner U.
        • Smith F.J.
        • McLean W.H.
        Statins downregulate K6a promoter activity: a possible therapeutic avenue for pachyonychia congenita.
        J Invest Dermatol. 2011; 131: 1045-1052
        • Zieman A.G.
        • Coulombe P.A.
        Pathophysiology of pachyonychia congenita-associated palmoplantar keratoderma: new insights into skin epithelial homeostasis and avenues for treatment.
        Br J Dermatol. 2020; 182: 564-573
        • Zieman A.G.
        • Poll B.G.
        • Ma J.
        • Coulombe P.A.
        Altered keratinocyte differentiation is an early driver of keratin mutation-based palmoplantar keratoderma.
        Hum Mol Genet. 2019; 28: 2255-2270