From Your Nose to Your Toes: A Review of Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic–Associated Pernio

Lisa M. Arkin, John J. Moon, Jennifer M. Tran, Samira Asgari, Cliona O’Farrelly, Jean-Laurent Casanova, Edward W. Cowen, Jacqueline W. Mays, Anne Marie Singh, and Beth A. Drolet, on behalf of the COVID Human Genetic Effort

Despite thousands of reported patients with pandemic-associated pernio, low rates of seroconversion and PCR positivity have defied causative linkage to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pernio in uninfected children is associated with monogenic disorders of excessive IFN-1 immunity, whereas severe COVID-19 pneumonia can result from insufficient IFN-1. Moreover, SARS-CoV-2 spike protein and robust IFN-1 response are seen in the skin of patients with pandemic-associated pernio, suggesting an excessive innate immune skin response to SARS-CoV-2. Understanding the pathophysiology of this phenomenon may elucidate the host mechanisms that drive a resilient immune response to SARS-CoV-2 and could produce relevant therapeutic targets.

Journal of Investigative Dermatology (2021) 141, 2791–2796; doi:10.1016/j.jid.2021.05.024

INTRODUCTION

In March 2020, just weeks after the onset of community spread of COVID-19 in Italy, reports of pandemic-associated pernio emerged. Shortly thereafter, dermatologists in the United States were inundated with pernio referrals as the first surge of COVID-19 arrived in the United States (Bouaziz et al., 2020; Cordero et al., 2020; Duong et al., 2020; Galván Casas et al., 2020; Landa et al., 2020; López-Robles et al., 2020; Piccolo et al., 2020). The phenotype of cool extremities with pain/swelling followed by red-violaceous discoloration and finally vesiculation of the toes and fingers were strikingly consistent (Figure 1a). Whereas older age was an important risk factor for severe infection, most patients with pernio were young, with a median age of 25 years in an international dermatology registry (Castelo-Soccio et al., 2021; Freeman et al., 2020). Many had close contact with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected individuals; yet, nearly all were otherwise healthy and denied typical respiratory manifestations of COVID-19 (Castelo-Soccio et al., 2021; Freeman et al., 2020). The spatial and temporal association between pernio and the COVID-19 pandemic has now been independently observed across multiple countries, including Italy, Spain, Germany, the United Kingdom, France, and the United States.

The strength of this spatial and temporal association along with its consistency across multiple countries supports a SARS-CoV-2–triggered phenomenon. Yet, low rates of positive PCR testing of nasopharyngeal samples (0–20%) and antibody positivity (0–55%) across 175 publications and thousands of reported patients have led some authors to suggest that this is an epiphenomenon (Baek and Herman, 2021; Galván Casas et al., 2020). This review will summarize and integrate the growing evidence for a causal relationship with SARS-CoV-2 and construct a mechanistic hypothesis. Pandemic-associated pernio augments the knowledge regarding the spectrum of SARS-CoV-2 infection and reinforces the critical importance of IFN-1 signaling in disease outcomes. A robust IFN-1 response in patients who remain asymptomatic and antibody negative could suggest a population with intrinsic resistance to severe COVID-19. Because the host immune response to SARS-CoV-2 infection is a critical determinant for COVID-19 outcomes, understanding those with natural resiliency to SARS-CoV-2 exposure could produce clinically relevant therapeutic targets.

INBORN ERRORS OF IFN-1 AND LIFE-THREATENING INFECTION

IFN-1 responses are tightly regulated to ensure protective immunity while avoiding toxicity from excessive and prolonged IFN signaling. They are largely produced in the blood by plasmacytoid dendritic cells (pDCs) in response to viral...
IFN-1 DISORDER IS CRITICAL IN COVID-19 OUTCOMES
Recent investigations of host-specific responses to SARS-CoV-2 have confirmed the central role of IFN-1 signaling in COVID-19 outcomes. An attenuated IFN-1 response was found in critically ill patients with SARS-CoV-1 (Channappanavar et al., 2016). In an international cohort, our team found that 3% of patients with life-threatening COVID-19 harbor loss-of-function variants involved in IFN-1 signaling, with pDCs that did not produce IFN-1 in response to SARS-CoV-2 (Zhang et al., 2020). An accompanying study found that 10% of patients with critical COVID-19 infection had circulating neutralizing autoantibodies against IFN-1. These autoantibodies were pre-existing and were a cause of severe disease rather than a consequence of infection. Remarkably, 94% of these patients were men, half of whom were aged >65 years, and more than a third died from COVID-19 (Bastard et al., 2020).

EXCEPTIONAL INNATE IMMUNITY MAY PROVIDE RESISTANCE TO VIRAL INFECTION WITHOUT ENGAGING THE ADAPTIVE IMMUNE SYSTEM
In theory, robust innate and intrinsic immune responses may be sufficient to clear a viral exposure without triggering antibody production. This is a difficult phenomenon to study because most patients with viral clearance are identified by their postinfectious seroconversion. However, potential resistance to hepatitis C virus (HCV) infection has been described in high-risk injection drug users who lack HCV-specific T-cell responses and seroconversion despite a long history of HCV exposure, suggesting that individuals may be resistant to viral infection or protected from viral replication by an exceptional innate antiviral response without seroconversion (Shawa et al., 2017). The pandemic provides an opportunity to investigate antiviral resistance through the study of close contacts of patients with critical COVID-19 who remain asymptomatic and seronegative. Patients with pandemic-associated pernio may also serve as a model for a mild or resistant SARS-CoV-2 phenotype and are readily identifiable by their skin findings.

ASSOCIATION OF PERNIO/CHILBLAINS WITH MONOGENIC DISORDERS OF CONSTITUTIVELY ACTIVE IFN-1 PRODUCTION
Both clinically and histologically, pandemic-associated pernio mimics the skin lesions of familial chilblain lupus and Aicardi–Goutières syndrome, which are characterized by IFN-1 excess. These monogenic disorders, referred to as type 1 interferonopathies, are caused by mutations associated with impaired nucleic acid sensing that lead to sustained and upregulated IFN-1 signaling (Rice et al., 2007; Uggenti et al., 2019; Zimmermann et al., 2019). In affected patients, pernio develops in early infancy, followed by systemic vasculopathy due to autoinflammation. IFN-1 is profoundly increased in affected skin and blood. Similar to pandemic-associated pernio, cold is a critical precipitant. In familial chilblain lupus, 5-day cold exposure of primary fibroblasts followed by rewarming enhanced ROS, a known trigger of DNA damage, and increased IFN-1 activation, switching cells from a quiescent to a proinflammatory state (Günther et al., 2015).

INVESTIGATION OF COVID TOES IDENTIFIES SPIKE PROTEIN
COVID-19 autopsy studies have shown a SARS-CoV-2 tropism for the skin. Angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor, is expressed on dermal blood vessels, the basal layer of the epidermis, and unexpectedly on eccrine glands (Hamming et al., 2004) (Figure 1b). We hypothesize that this expression may explain the localization of inflammation to hands and feet because these sites harbor the highest concentration of eccrine glands.
This is further supported by the recent demonstration of SARS-CoV-2–associated spike protein in cutaneous vascular endothelium and eccrine glands in biopsies from patients with COVID toes (Colmenero et al., 2020; Ko et al., 2021; Magro et al., 2021; Moon et al., 2021; Santonja et al., 2020). It should be noted that not all biopsy specimens detected spike protein, which could reflect the timing and depth of skin biopsy. Importantly, nucleocapsid antibody staining has been negative.

The immunohistochemistry patterns in published studies, coupled with lack of detection of viral RNA by in situ hybridization or PCR from tissue, suggests that pandemic-associated pernio may result from hematogenous spread of viral material and may not require viral replication in the skin (Herman et al., 2020; Ko et al., 2021). Emerging reports of pernio after mRNA vaccination also raise speculation that this could be an immune response to viral proteins or RNA without viral replication (Davido et al., 2021; McMahon et al., 2021). In unaffected skin of patients with critical COVID-19 infection, Magro et al. (2020) found microvascular complement deposition (an end-terminal event driving thrombosis) strongly colocalized with spike protein and the ACE2 receptor but without in situ evidence of viral RNA. The colocalization of the ACE2 receptor and viral capsid proteins suggests that circulating viral debris may dock onto the endothelium/eccrine ducts. This would be consistent with the hypothesis that patients with pandemic-associated pernio clear the SARS-CoV-2 through a robust IFN-1 response but shower viral debris that binds ACE2 receptors in the skin. Finally, the renin-angiotensin system (RAS) is expressed locally in the skin and may be indirectly activated by ACE2 binding from SARS-CoV-2 (Moon et al., 2021; Silva et al., 2020; Steckelings et al., 2004). We hypothesize that persistent vasoconstriction, poor capillary refill, and the chronicity of the response in some patients could also be linked to local cutaneous RAS activation (Figure 2).

EVIDENCE OF ROBUST IFN-1 RESPONSE IN COVID TOES

Pandemic-associated pernio exhibits a lymphocytic infiltrate in a perivascular and perieccrine distribution (Figure 1b),
COLD FEET: AMBIENT TEMPERATURE AFFECTS VIRUS–HOST RESPONSES

A cold environment is crucial to the induction of COVID toes. Humans maintain a narrow range of core body temperatures through neural, vascular, and biochemical mechanisms. Increases in body temperature through fever enhance immune function and pathogen killing. Colder ambient temperatures are known to diminish the efficiency of the innate immune response, facilitating viral replication in other infections (Foxman et al., 2015). Indeed, in vitro SARS-CoV-2 replication significantly increases with colder temperatures, demonstrating 10-fold higher infectious titers when incubated at 33 °C versus incubating at 37 °C (V'kovski et al., 2021). Importantly, attenuated IFN-1 expression is responsible for the increased viral replication efficiency at 33 °C. In pandemic-associated pernio, one could hypothesize that after clearance from the warmer respiratory tract, dispersed viral material settles at these colder acral sites owing to skin tropism through ACE2 expression, evading immune clearance. With rewarming of the toes, a local IFN-1 response could be initiated by pDCs after migration into the skin.

CONCLUSIONS

The striking spatial and temporal association with the pandemic, the accumulating evidence of both viral material and MxA in the affected skin, and the biologic plausibility of pernio linked to the critical role of IFN-1 signaling in COVID-19 all suggest a causal linkage with SARS-CoV-2. This evidence implicates a robust IFN-1 response in affected patients. The absence of antibody production supports rather than undermines this hypothesis because an exceptional innate and intrinsic immune activity may be enough to clear the viral infection without seroconversion. These findings further intimate IFN-1 signaling in host outcomes to COVID-19.

In cooperation with the National Institutes of Health–funded Human Genome Effort and the International COVID Human Genomic Effort, the COVID toes biobank at the University of Wisconsin-Madison seeks to identify the genetic and immunologic basis to provide clinically relevant insights into SARS-CoV-2–associated pernio and could provide a framework for considering preventative approaches to SARS-CoV-2 infection utilizing early administration of IFNs.
Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; 26Department of Clinical Immunology and Infectious Diseases, The Clinical Tuberculosis and Epidemiology Research Unit, Research Institute, McGill University Health Centre, Montreal, Canada; 27Infectious Disease Susceptibility Program, Research Institute, McGill University Health Centre, Montréal, Quebec, Canada; 28Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; 29Division of Allergy and Immunology, Department of Pediatrics, School of Medicine, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; 30Laboratory of Immunobiology, Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; 31Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent (CPiG), PID Research Laboratory, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Edegem, Belgium; 32 Holy Family Red Crescent Medical College, Dhaka, Bangladesh; 33Centre for Precision Therapeutics, NeuroGen Children’s Healthcare, Dhaka, Bangladesh; 34Medical Genetics, IRCCS Ospedale San Raffaele, Milan, Italy; 35Department of Biomedicine and Prevention, School of Medicine and Surgery, For Vergata University of Rome, Rome, Italy; 36Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy; 37Pediatric Immunology, Biotechnology and Biomathematics, University of Bari Aldo Moro, Bari, Italy; 38Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; 39Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; 40Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria; 41School of Life Sciences, École Polytechnique fédérale de Lausanne, Lausanne, Switzerland; 42Precision Medicine, Lausanne University Hospital, University of Lausanne, Switzerland; 43The Rockefeller University, Howard Hughes Medical Institute, New York, New York, New York, USA; 44Institut de Biomedicina de Valencia-CSIC, Valencia, Spain; 45Molecular Pathology, Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; 46Laboratory of Clinical Pharmacetics & Therapeutics, Division of Pharmaceutics, Faculty of Pharmacetical Sciences, Hokkaido University, Sapporo, Japan; 47Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; 48Department of Pediatric Immunology, Medical Faculty, University Clinic for Children’s Diseases, University “St.Cyril and Methodii” Skopje, Skopje, North Macedonia; 49INSERM U1163, Imagine Institute, University of Paris, Paris, France; 50Department of Infectious Diseases, Lab in Immune Pathogenetics, for Science, Technology and Research (A*STAR), Singapore, Singapore; 51Singapore Immunology Network (SigN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; 52Saeed Pathobiology and Genetics Lab, Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China

AUTHOR CONTRIBUTIONS
Conceptualization: BAD, COF, JLC, JIM, JWM, LMA; Project Administration: JIM; Supervision: BAD; Visualization: JIM, JWM; Writing - Original Draft Preparation: BAD, COF, JLC, JIM, LMA; Writing - Review and Editing: AMS, EWC, JWM, JMT, SA

REFERENCES

www.jidonline.org 2795

