Advertisement
Journal of Investigative Dermatology Home

Slow Transcription of the 99a/let-7c/125b-2 Cluster Results in Differential MiRNA Expression and Promotes Melanoma Phenotypic Plasticity

      Almost half of the human microRNAs (miRNAs) are encoded in clusters. Although transcribed as a single unit, the levels of individual mature miRNAs often differ. The mechanisms underlying differential biogenesis of clustered miRNAs and the resulting physiological implications are mostly unknown. In this study, we report that the melanoma master transcription regulator MITF regulates the differential expression of the 99a/let-7c/125b-2 cluster by altering the distribution of RNA polymerase II along the cluster. We discovered that MITF interacts with TRIM28, a known inhibitor of RNA polymerase II transcription elongation, at the mIR-let-7c region, resulting in the pausing of RNA polymerase II activity and causing an elevation in mIR-let-7c expression; low levels of RNA polymerase II occupation over miR-99a and miR-125b-2 regions decreases their biogenesis. Furthermore, we showed that this differential expression affects the phenotypic state of melanoma cells. RNA-sequencing analysis of proliferative melanoma cells that express miR-99a and miR-125b mimics revealed a transcriptomic shift toward an invasive phenotype. Conversely, expression of a mIR-let-7c mimic in invasive melanoma cells induced a shift to a more proliferative state. We confirmed direct target genes of these miRNAs, including FGFR3, BAP1, Bcl2, TGFBR1, and CDKN1A. Our study demonstrates an MITF-governed biogenesis mechanism that results in differential expression of clustered 99a/let-7c/125b-2 miRNAs that control melanoma progression.

      Abbreviations:

      DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole), miRNA (microRNA), Pol-II (polymerase II), p-Ser (phosphorylated serine), siMITF (small interfering RNA targeting MITF)
      To read this article in full you will need to make a payment
      Purchase one-time access
      Society Members (SID/ESDR), remember to log in for access.
      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ashburner M.
        • Ball C.A.
        • Blake J.A.
        • Botstein D.
        • Butler H.
        • Cherry J.M.
        • et al.
        Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.
        Nat Genet. 2000; 25: 25-29
        • Bailey S.T.
        • Westerling T.
        • Brown M.
        Loss of estrogen-regulated microRNA expression increases HER2 signaling and is prognostic of poor outcome in luminal breast cancer.
        Cancer Res. 2015; 75: 436-445
        • Banzhaf-Strathmann J.
        • Edbauer D.
        Good guy or bad guy: the opposing roles of microRNA 125b in cancer.
        Cell Commun Signal. 2014; 12: 30
        • Bartel D.P.
        MicroRNAs: target recognition and regulatory functions.
        Cell. 2009; 136: 215-233
        • Baskerville S.
        • Bartel D.P.
        Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes.
        RNA. 2005; 11: 241-247
        • Bell R.E.
        • Khaled M.
        • Netanely D.
        • Schubert S.
        • Golan T.
        • Buxbaum A.
        • et al.
        Transcription factor/microRNA axis blocks melanoma invasion program by miR-211 targeting NUAK1.
        J Invest Dermatol. 2014; 134: 441-451
        • Bell R.E.
        • Levy C.
        The three M’s: melanoma, microphthalmia-associated transcription factor and microRNA.
        Pigment Cell Melanoma Res. 2011; 24: 1088-1106
        • Bensaude O.
        Inhibiting eukaryotic transcription: which compound to choose? How to evaluate its activity?.
        Transcription. 2011; 2: 103-108
        • Bentley D.L.
        Coupling mRNA processing with transcription in time and space.
        Nat Rev Genet. 2014; 15: 163-175
        • Bousquet M.
        • Harris M.H.
        • Zhou B.
        • Lodish H.F.
        MicroRNA miR-125b causes leukemia.
        Proc Natl Acad Sci USA. 2010; 107: 21558-21563
        • Bunch H.
        • Zheng X.
        • Burkholder A.
        • Dillon S.T.
        • Motola S.
        • Birrane G.
        • et al.
        TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release.
        Nat Struct Mol Biol. 2014; 21: 876-883
        • Cai Y.
        • Yu X.
        • Hu S.
        • Yu J.
        A brief review on the mechanisms of miRNA regulation.
        Genomics Proteomics Bioinformatics. 2009; 7: 147-154
        • Camps C.
        • Buffa F.M.
        • Colella S.
        • Moore J.
        • Sotiriou C.
        • Sheldon H.
        • et al.
        Hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer.
        Clin Cancer Res. 2008; 14: 1340-1348
        • Cappuzzo F.
        • Sacconi A.
        • Landi L.
        • Ludovini V.
        • Biagioni F.
        • D’Incecco A.
        • et al.
        MicroRNA signature in metastatic colorectal cancer patients treated with anti-EGFR monoclonal antibodies.
        Clin Colorectal Cancer. 2014; 13: 37-45.e4
        • Carreira S.
        • Goodall J.
        • Denat L.
        • Rodriguez M.
        • Nuciforo P.
        • Hoek K.S.
        • et al.
        Mitf regulation of Dia1 controls melanoma proliferation and invasiveness.
        Genes Dev. 2006; 20: 3426-3439
        • Chaudhuri A.A.
        • So A.Y.
        • Mehta A.
        • Minisandram A.
        • Sinha N.
        • Jonsson V.D.
        • et al.
        Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A.
        Proc Natl Acad Sci USA. 2012; 109: 4233-4238
        • Chaulk S.G.
        • Thede G.L.
        • Kent O.A.
        • Xu Z.
        • Gesner E.M.
        • Veldhoen R.A.
        • et al.
        Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis.
        RNA Biol. 2011; 8: 1105-1114
        • Cheli Y.
        • Giuliano S.
        • Fenouille N.
        • Allegra M.
        • Hofman V.
        • Hofman P.
        • et al.
        Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells.
        Oncogene. 2012; 31: 2461-2470
        • Cheng X.
        • Xia W.
        • Yang J.Y.
        • Hsu J.L.
        • Chou C.K.
        • Sun H.L.
        • et al.
        Activation of p21(CIP1/WAF1) in mammary epithelium accelerates mammary tumorigenesis and promotes lung metastasis.
        Biochem Biophys Res Commun. 2010; 403: 103-107
        • Clark E.L.
        • Hadjimichael C.
        • Temperley R.
        • Barnard A.
        • Fuller-Pace F.V.
        • Robson C.N.
        p68/DdX5 Supports β-catenin & RNAP II during androgen receptor mediated transcription in prostate cancer.
        PLoS One. 2013; 8: e54150
        • Corcoran D.L.
        • Pandit K.V.
        • Gordon B.
        • Bhattacharjee A.
        • Kaminski N.
        • Benos P.V.
        Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data.
        PLoS One. 2009; 4: e5279
        • D’Orazio J.A.
        • Nobuhisa T.
        • Cui R.
        • Arya M.
        • Spry M.
        • Wakamatsu K.
        • et al.
        Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning.
        Nature. 2006; 443: 340-344
        • Dubois M.F.
        • Bellier S.
        • Seo S.J.
        • Bensaude O.
        Phosphorylation of the RNA polymerase II largest subunit during heat shock and inhibition of transcription in HeLa cells.
        J Cell Physiol. 1994; 158: 417-426
        • Erdei E.
        • Torres S.M.
        A new understanding in the epidemiology of melanoma.
        Expert Rev Anticancer Ther. 2010; 10: 1811-1823
        • Farberov L.
        • Herzig E.
        • Modai S.
        • Isakov O.
        • Hizi A.
        • Shomron N.
        MicroRNA-mediated regulation of p21 and TASK1 cellular restriction factors enhances HIV-1 infection.
        J Cell Sci. 2015; 128: 1607-1616
        • Friedman L.M.
        • Dror A.A.
        • Mor E.
        • Tenne T.
        • Toren G.
        • Satoh T.
        • et al.
        MicroRNAs are essential for development and function of inner ear hair cells in vertebrates.
        Proc Natl Acad Sci USA. 2009; 106: 7915-7920
        • Friedman R.C.
        • Farh K.K.
        • Burge C.B.
        • Bartel D.P.
        Most mammalian mRNAs are conserved targets of microRNAs.
        Genome Res. 2009; 19: 92-105
        • Fuda N.J.
        • Ardehali M.B.
        • Lis J.T.
        Defining mechanisms that regulate RNA polymerase II transcription in vivo.
        Nature. 2009; 461: 186-192
        • Garraway L.A.
        • Widlund H.R.
        • Rubin M.A.
        • Getz G.
        • Berger A.J.
        • Ramaswamy S.
        • et al.
        Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma.
        Nature. 2005; 436: 117-122
        • Gene Ontology Consortium
        The Gene Ontology resource: enriching a Gold mine.
        Nucleic Acids Res. 2021; 49: D325-D334
        • Glaich O.
        • Parikh S.
        • Bell R.E.
        • Mekahel K.
        • Donyo M.
        • Leader Y.
        • et al.
        DNA methylation directs microRNA biogenesis in mammalian cells.
        Nat Commun. 2019; 10: 5657
        • Goding C.R.
        Commentary. A picture of Mitf in melanoma immortality.
        Oncogene. 2011; 30: 2304-2306
        • Golan T.
        • Messer A.R.
        • Amitai-Lange A.
        • Melamed Z.
        • Ohana R.
        • Bell R.E.
        • et al.
        Interactions of melanoma cells with distal keratinocytes trigger metastasis via notch signaling inhibition of MITF.
        Mol Cell. 2015; 59: 664-676
        • Golan T.
        • Parikh R.
        • Jacob E.
        • Vaknine H.
        • Zemser-Werner V.
        • Hershkovitz D.
        • et al.
        Adipocytes sensitize melanoma cells to environmental TGF-β cues by repressing the expression of miR-211.
        Sci Signal. 2019; 12eaav6847
        • Gray-Schopfer V.
        • Wellbrock C.
        • Marais R.
        Melanoma biology and new targeted therapy.
        Nature. 2007; 445: 851-857
        • Gromak N.
        • Dienstbier M.
        • Macias S.
        • Plass M.
        • Eyras E.
        • Cáceres J.F.
        • et al.
        Drosha regulates gene expression independently of RNA cleavage function [published correction appears in Cell Rep 2014;7:1753–4].
        Cell Rep. 2013; 5: 1499-1510
        • Han H.B.
        • Gu J.
        • Zuo H.J.
        • Chen Z.G.
        • Zhao W.
        • Li M.
        • et al.
        Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer.
        J Pathol. 2012; 226: 544-555
        • Hertel J.
        • Lindemeyer M.
        • Missal K.
        • Fried C.
        • Tanzer A.
        • Flamm C.
        • et al.
        The expansion of the metazoan microRNA repertoire.
        BMC Genomics. 2006; 7: 25
        • Hoek K.S.
        • Goding C.R.
        Cancer stem cells versus phenotype-switching in melanoma.
        Pigment Cell Melanoma Res. 2010; 23: 746-759
        • Holst L.M.
        • Kaczkowski B.
        • Glud M.
        • Futoma-Kazmierczak E.
        • Hansen L.F.
        • Gniadecki R.
        The microRNA molecular signature of atypic and common acquired melanocytic nevi: differential expression of miR-125b and let-7c.
        Exp Dermatol. 2011; 20: 278-280
        • Hsin J.P.
        • Manley J.L.
        The RNA polymerase II CTD coordinates transcription and RNA processing.
        Genes Dev. 2012; 26: 2119-2137
        • Jerby-Arnon L.
        • Shah P.
        • Cuoco M.S.
        • Rodman C.
        • Su M.J.
        • Melms J.C.
        • et al.
        A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade.
        Cell. 2018; 175: 984-997.e24
        • Klusmann J.H.
        • Li Z.
        • Böhmer K.
        • Maroz A.
        • Koch M.L.
        • Emmrich S.
        • et al.
        miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia.
        Genes Dev. 2010; 24: 478-490
        • Krol J.
        • Loedige I.
        • Filipowicz W.
        The widespread regulation of microRNA biogenesis, function and decay.
        Nat Rev Genet. 2010; 11: 597-610
        • Landgraf P.
        • Rusu M.
        • Sheridan R.
        • Sewer A.
        • Iovino N.
        • Aravin A.
        • et al.
        A mammalian microRNA expression atlas based on small RNA library sequencing.
        Cell. 2007; 129: 1401-1414
        • Laurette P.
        • Strub T.
        • Koludrovic D.
        • Keime C.
        • Le Gras S.
        • Seberg H.
        • et al.
        Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells.
        Elife. 2015; 4: e06857
        • Lawler K.
        • Foran E.
        • O’Sullivan G.
        • Long A.
        • Kenny D.
        Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner.
        Am J Physiol Cell Physiol. 2006; 291: C668-C677
        • Lee Y.
        • Kim M.
        • Han J.
        • Yeom K.H.
        • Lee S.
        • Baek S.H.
        • et al.
        MicroRNA genes are transcribed by RNA polymerase II.
        EMBO J. 2004; 23: 4051-4060
        • Levy C.
        • Khaled M.
        • Fisher D.E.
        MITF: master regulator of melanocyte development and melanoma oncogene.
        Trends Mol Med. 2006; 12: 406-414
        • Levy C.
        • Khaled M.
        • Iliopoulos D.
        • Janas M.M.
        • Schubert S.
        • Pinner S.
        • et al.
        Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma.
        Mol Cell. 2010; 40: 841-849
        • Levy C.
        • Khaled M.
        • Robinson K.C.
        • Veguilla R.A.
        • Chen P.H.
        • Yokoyama S.
        • et al.
        Lineage-specific transcriptional regulation of DICER by MITF in melanocytes.
        Cell. 2010; 141: 994-1005
        • Lin K.Y.
        • Ye H.
        • Han B.W.
        • Wang W.T.
        • Wei P.P.
        • He B.
        • et al.
        Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma.
        Oncogene. 2016; 35: 3376-3386
        • Lin W.M.
        • Baker A.C.
        • Beroukhim R.
        • Winckler W.
        • Feng W.
        • Marmion J.M.
        • et al.
        Modeling genomic diversity and tumor dependency in malignant melanoma.
        Cancer Res. 2008; 68: 664-673
        • Linos E.
        • Swetter S.M.
        • Cockburn M.G.
        • Colditz G.A.
        • Clarke C.A.
        Increasing burden of melanoma in the United States.
        J Invest Dermatol. 2009; 129: 1666-1674
        • Long X.
        • Shi Y.
        • Ye P.
        • Guo J.
        • Zhou Q.
        • Tang Y.
        MicroRNA-99a suppresses breast cancer progression by targeting FGFR3.
        Front Oncol. 2020; 9: 1473
        • Marbach-Bar N.
        • Ben-Noon A.
        • Ashkenazi S.
        • Tamarkin-Ben Harush A.
        • Avnit-Sagi T.
        • Walker M.D.
        • et al.
        Disparity between microRNA levels and promoter strength is associated with initiation rate and Pol II pausing.
        Nat Commun. 2013; 4: 2118
        • Mersaoui S.Y.
        • Yu Z.
        • Coulombe Y.
        • Karam M.
        • Busatto F.F.
        • Masson J.Y.
        • et al.
        Arginine methylation of the DDX 5 helicase RGG/RG motif by PRMT 5 regulates resolution of RNA:DNA hybrids.
        EMBO J. 2019; 38e100986
        • Monteys A.M.
        • Spengler R.M.
        • Wan J.
        • Tecedor L.
        • Lennox K.A.
        • Xing Y.
        • et al.
        Structure and activity of putative intronic miRNA promoters.
        RNA. 2010; 16: 495-505
        • Morlando M.
        • Ballarino M.
        • Gromak N.
        • Pagano F.
        • Bozzoni I.
        • Proudfoot N.J.
        Primary microRNA transcripts are processed co-transcriptionally.
        Nat Struct Mol Biol. 2008; 15: 902-909
        • Muñoz M.J.
        • de la Mata M.
        • Kornblihtt A.R.
        The carboxy terminal domain of RNA polymerase II and alternative splicing.
        Trends Biochem Sci. 2010; 35: 497-504
        • Nadiminty N.
        • Tummala R.
        • Lou W.
        • Zhu Y.
        • Shi X.B.
        • Zou J.X.
        • et al.
        MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth.
        PLoS One. 2012; 7: e32832
        • Nadiminty N.
        • Tummala R.
        • Lou W.
        • Zhu Y.
        • Zhang J.
        • Chen X.
        • et al.
        MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells.
        J Biol Chem. 2012; 287: 1527-1537
        • Nishida N.
        • Yokobori T.
        • Mimori K.
        • Sudo T.
        • Tanaka F.
        • Shibata K.
        • et al.
        MicroRNA miR-125b is a prognostic marker in human colorectal cancer.
        Int J Oncol. 2011; 38: 1437-1443
        • Nordlinger A.
        • Dror S.
        • Elkahloun A.
        • Del Rio J.
        • Stubbs E.
        • Golan T.
        • et al.
        Mutated MITF-E87R in melanoma enhances tumor progression via S100A4.
        J Invest Dermatol. 2018; 138: 2216-2223
        • Olena A.F.
        • Patton J.G.
        Genomic organization of microRNAs.
        J Cell Physiol. 2010; 222: 540-545
        • Ono M.
        • Hakomori S.
        Glycosylation defining cancer cell motility and invasiveness.
        Glycoconj J. 2004; 20: 71-78
        • Ozsolak F.
        • Poling L.L.
        • Wang Z.
        • Liu H.
        • Liu X.S.
        • Roeder R.G.
        • et al.
        Chromatin structure analyses identify miRNA promoters.
        Genes Dev. 2008; 22: 3172-3183
        • Pawlicki J.M.
        • Steitz J.A.
        Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production.
        J Cell Biol. 2008; 182: 61-76
        • Pelosi A.
        • Careccia S.
        • Sagrestani G.
        • Nanni S.
        • Manni I.
        • Schinzari V.
        • et al.
        Dual promoter usage as regulatory mechanism of let-7c expression in leukemic and solid tumors.
        Mol Cancer Res. 2014; 12: 878-889
        • Pinner S.
        • Jordan P.
        • Sharrock K.
        • Bazley L.
        • Collinson L.
        • Marais R.
        • et al.
        Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination.
        Cancer Res. 2009; 69: 7969-7977
        • Piskounova E.
        • Polytarchou C.
        • Thornton J.E.
        • Lapierre R.J.
        • Pothoulakis C.
        • Hagan J.P.
        • et al.
        Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms.
        Cell. 2011; 147: 1066-1079
        • Quintana E.
        • Shackleton M.
        • Foster H.R.
        • Fullen D.R.
        • Sabel M.S.
        • Johnson T.M.
        • et al.
        Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized.
        Cancer Cell. 2010; 18: 510-523
        • Rudnicki A.
        • Isakov O.
        • Ushakov K.
        • Shivatzki S.
        • Weiss I.
        • Friedman L.M.
        • et al.
        Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRNAs and defines regulatory pathways.
        BMC Genomics. 2014; 15: 484
        • Schultz J.
        • Lorenz P.
        • Gross G.
        • Ibrahim S.
        • Kunz M.
        MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth.
        Cell Res. 2008; 18: 549-557
        • Segura M.F.
        • Greenwald H.S.
        • Hanniford D.
        • Osman I.
        • Hernando E.
        MicroRNA and cutaneous melanoma: from discovery to prognosis and therapy.
        Carcinogenesis. 2012; 33: 1823-1832
        • Seitz H.
        • Royo H.
        • Bortolin M.L.
        • Lin S.P.
        • Ferguson-Smith A.C.
        • Cavaillé J.
        A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain.
        Genome Res. 2004; 14: 1741-1748
        • Shah M.
        • Bhoumik A.
        • Goel V.
        • Dewing A.
        • Breitwieser W.
        • Kluger H.
        • et al.
        A role for ATF2 in regulating MITF and melanoma development.
        PLoS Genet. 2010; 6e1001258
        • Shaham L.
        • Binder V.
        • Gefen N.
        • Borkhardt A.
        • Izraeli S.
        MiR-125 in normal and malignant hematopoiesis.
        Leukemia. 2012; 26: 2011-2018
        • Shaham L.
        • Vendramini E.
        • Ge Y.
        • Goren Y.
        • Birger Y.
        • Tijssen M.R.
        • et al.
        MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of down syndrome [published correction appears in Blood 2016;127:2042].
        Blood. 2015; 125: 1292-1301
        • Shi X.B.
        • Xue L.
        • Ma A.H.
        • Tepper C.G.
        • Kung H.J.
        • White R.W.
        MiR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes.
        Prostate. 2011; 71: 538-549
        • Sulaimon S.S.
        • Kitchell B.E.
        The basic biology of malignant melanoma: molecular mechanisms of disease progression and comparative aspects.
        J Vet Intern Med. 2003; 17: 760-772
        • Szklarczyk D.
        • Gable A.L.
        • Lyon D.
        • Junge A.
        • Wyder S.
        • Huerta-Cepas J.
        • et al.
        STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.
        Nucleic Acids Res. 2019; 47: D607-D613
        • Tang H.
        • Ma M.
        • Dai J.
        • Cui C.
        • Si L.
        • Sheng X.
        • et al.
        MiR-let-7b and miR-let-7c suppress tumourigenesis of human mucosal melanoma and enhance the sensitivity to chemotherapy.
        J Exp Clin Cancer Res. 2019; 38: 212
        • Truini A.
        • Coco S.
        • Nadal E.
        • Genova C.
        • Mora M.
        • Dal Bello M.G.
        • et al.
        Downregulation of miR-99a/let-7c/miR-125b miRNA cluster predicts clinical outcome in patients with unresected malignant pleural mesothelioma.
        Oncotarget. 2017; 8: 68627-68640
        • Truscott M.
        • Islam A.B.
        • Frolov M.V.
        Novel regulation and functional interaction of polycistronic miRNAs.
        RNA. 2016; 22: 129-138
        • Tzur G.
        • Israel A.
        • Levy A.
        • Benjamin H.
        • Meiri E.
        • Shufaro Y.
        • et al.
        Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development.
        PLoS One. 2009; 4: e7511
        • Wang H.
        • Tan G.
        • Dong L.
        • Cheng L.
        • Li K.
        • Wang Z.
        • et al.
        Circulating mir-125b as a marker predicting chemoresistance in breast cancer.
        PLoS One. 2012; 7: e34210
        • Winter J.
        • Diederichs S.
        Argonaute proteins regulate microRNA stability: increased microRNA abundance by Argonaute proteins is due to microRNA stabilization.
        RNA Biol. 2011; 8: 1149-1157
        • Yamada A.
        • Horimatsu T.
        • Okugawa Y.
        • Nishida N.
        • Honjo H.
        • Ida H.
        • et al.
        Serum miR-21, miR-29a, and miR-125b are promising biomarkers for the early detection of colorectal neoplasia.
        Clin Cancer Res. 2015; 21: 4234-4242
        • Yan L.
        • Yu M.C.
        • Gao G.L.
        • Liang H.W.
        • Zhou X.Y.
        • Zhu Z.T.
        • et al.
        MiR-125a-5p functions as a tumour suppressor in breast cancer by downregulating BAP1.
        J Cell Biochem. 2018; 119: 8773-8783
        • Yankulov K.
        • Yamashita K.
        • Roy R.
        • Egly J.M.
        • Bentley D.L.
        The transcriptional elongation inhibitor 5,6-dichloro-1-beta-D- ribofuranosylbenzimidazole inhibits transcription factor IIH-associated protein kinase.
        J Biol Chem. 1995; 270: 23922-23925
        • Yu J.
        • Wang F.
        • Yang G.H.
        • Wang F.L.
        • Ma Y.N.
        • Du Z.W.
        • et al.
        Human microRNA clusters: genomic organization and expression profile in leukemia cell lines.
        Biochem Biophys Res Commun. 2006; 349: 59-68
        • Zhao A.
        • Zeng Q.
        • Xie X.
        • Zhou J.
        • Yue W.
        • Li Y.
        • et al.
        MicroRNA-125b induces cancer cell apoptosis through suppression of Bcl-2 expression.
        J Genet Genomics. 2012; 39: 29-35
        • Zhao B.
        • Han H.
        • Chen J.
        • Zhang Z.
        • Li S.
        • Fang F.
        • et al.
        MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3.
        Cancer Lett. 2014; 342: 43-51
        • Zhu X.
        • Wu L.
        • Yao J.
        • Jiang H.
        • Wang Q.
        • Yang Z.
        • et al.
        MicroRNA let-7c inhibits cell proliferation and induces cell cycle arrest by targeting CDC25A in human hepatocellular carcinoma.
        PLoS One. 2015; 10e0124266

      Supplementary References

        • Baskerville S.
        • Bartel D.P.
        Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes.
        RNA. 2005; 11: 241-247
        • Camps C.
        • Buffa F.M.
        • Colella S.
        • Moore J.
        • Sotiriou C.
        • Sheldon H.
        • et al.
        Hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer.
        Clin Cancer Res. 2008; 14: 1340-1348
        • Dobin A.
        • Davis C.A.
        • Schlesinger F.
        • Drenkow J.
        • Zaleski C.
        • Jha S.
        • et al.
        STAR: ultrafast universal RNA-seq aligner.
        Bioinformatics. 2013; 29: 15-21
        • Golan T.
        • Messer A.R.
        • Amitai-Lange A.
        • Melamed Z.
        • Ohana R.
        • Bell R.E.
        • et al.
        Interactions of melanoma cells with distal keratinocytes trigger metastasis via notch signaling inhibition of MITF.
        Mol Cell. 2015; 59: 664-676
        • Golan T.
        • Parikh R.
        • Jacob E.
        • Vaknine H.
        • Zemser-Werner V.
        • Hershkovitz D.
        • et al.
        Adipocytes sensitize melanoma cells to environmental TGF-β cues by repressing the expression of miR-211.
        Sci Signal. 2019; 12eaav6847
        • König R.
        • Chiang C.Y.
        • Tu B.P.
        • Yan S.F.
        • DeJesus P.D.
        • Romero A.
        • et al.
        A probability-based approach for the analysis of large-scale RNAi screens.
        Nat Methods. 2007; 4: 847-849
        • Levin L.
        • Srour S.
        • Gartner J.
        • Kapitansky O.
        • Qutob N.
        • Dror S.
        • et al.
        Parkin somatic mutations link melanoma and Parkinson’s disease.
        J Genet Genomics. 2016; 43: 369-379
        • Levy C.
        • Khaled M.
        • Robinson K.C.
        • Veguilla R.A.
        • Chen P.H.
        • Yokoyama S.
        • et al.
        Lineage-specific transcriptional regulation of DICER by MITF in melanocytes.
        Cell. 2010; 141: 994-1005
        • Love M.I.
        • Huber W.
        • Anders S.
        Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
        Genome Biol. 2014; 15: 550
        • Malcov-Brog H.
        • Alpert A.
        • Golan T.
        • Parikh S.
        • Nordlinger A.
        • Netti F.
        • et al.
        UV-protection timer controls linkage between stress and pigmentation skin protection systems.
        Mol Cell. 2018; 72: 444-456.e7
        • Nordlinger A.
        • Dror S.
        • Elkahloun A.
        • Del Rio J.
        • Stubbs E.
        • Golan T.
        • et al.
        Mutated MITF-E87R in melanoma enhances tumor progression via S100A4.
        J Invest Dermatol. 2018; 138: 2216-2223
        • Rudnicki A.
        • Isakov O.
        • Ushakov K.
        • Shivatzki S.
        • Weiss I.
        • Friedman L.M.
        • et al.
        Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRNAs and defines regulatory pathways.
        BMC Genomics. 2014; 15: 484
        • Sheinboim D.
        • Maza I.
        • Dror I.
        • Parikh S.
        • Krupalnik V.
        • Bell R.E.
        • et al.
        OCT4 impedes cell fate redirection by the melanocyte lineage master regulator MITF in mouse ESCs.
        Nat Commun. 2017; 8: 1022
        • Shen L.
        • Shao N.
        • Liu X.
        • Nestler E.
        Ngs.plot: quick mining and visualization of next-generation sequencing data by integrating genomic databases.
        BMC Genomics. 2014; 15: 284