ZFP36 Family Members Regulate the Proinflammatory Features of Psoriatic Dermal Fibroblasts

Chiara Angiolilli1,2, Emmerik F.A. Leijten1,2, Cornelis P.J. Bekker1,2, Ella Eeftink1, Barbara Giovannone1, Michel Olde Nordkamp1,2, Marlot van der Wal1, Judith L. Thijs3, Sebastiaan J. Vastert1,4, Femke van Wijk1, Timothy R.D.J. Radstake1,2 and Jorg van Loosdregt1

Dermal fibroblasts are strategically positioned underneath the basal epidermis layer to support keratinocyte proliferation and extracellular matrix production. In inflammatory conditions, these fibroblasts produce cytokines and chemokines that promote the chemoattraction of immune cells into the dermis and the hyperplasia of the epidermis, two characteristic hallmarks of psoriasis. However, how dermal fibroblasts specifically contribute to psoriasis development remains largely uncharacterized. In this study, we investigated through which cytokines and signaling pathways dermal fibroblasts contribute to the inflammatory features of psoriatic skin. We show that dermal fibroblasts from lesional psoriatic skin are important producers of inflammatory mediators, including IL-6, CXCL8, and CXCL2. This increased cytokine production was found to be regulated by ZFP36 family members ZFP36, ZFP36L1, and ZFP36L2, RNA-binding proteins with mRNA-degrading properties. In addition, the expression of ZFP36 family proteins was found to be reduced in chronic inflammatory conditions that mimic psoriatic lesional skin. Collectively, these results indicate that dermal fibroblasts are important producers of cytokines in psoriatic skin and that reduced expression of ZFP36 members in psoriasis dermal fibroblasts contributes to their inflammatory phenotype.

Journal of Investigative Dermatology (2022) 142, 402–413; doi:10.1016/j.jid.2021.06.030

INTRODUCTION
Psoriasis (Pso) is a common chronic inflammatory skin disease that affects 1–3% of the world population. The characteristic feature of established Pso is the presence of scaly and persistent skin lesions that result from abnormal activation and differentiation of keratinocytes (KCs) in the epidermis (Billi et al., 2019). Such epidermal changes are the consequence of chronic inflammatory events in the underlying dermal compartment, which involve the infiltration of mononuclear cells and the instauration of a positive inflamatory feedback loop in the skin (Afonina et al., 2021).

The participation of dermal fibroblasts in the transition from innate to adaptive immunity has recently been taken into consideration. Dermal fibroblasts are the most abundant cells in the dermis and are critically positioned underneath the basal epidermis layer to sustain KCs proliferation (Gubán et al., 2016; Miura et al., 2000). Their expanded life span and their stable topographic localization also make them more sensitive to possible insults from the microenvironment (Stunova and Vistejnova, 2018).

In stable conditions, dermal fibroblasts are primarily involved in extracellular matrix production and guarantee tissue integrity and repair. However, in activating conditions, such as in psoriatic skin, fibroblasts contribute to epidermal overgrowth by promoting KC proliferation (Gubán et al., 2016) and by producing proinflammatory proteins (Gegotek et al., 2020; Kolaí et al., 2012; Zalewska et al., 2006) in response to TNF-a and IL-17, key cytokines with elevated expression in psoriatic skin (Billi et al., 2019; Grine et al., 2015). Furthermore, fibroblasts from lesional (LS) psoriatic skin display higher oxidative damage than normal fibroblasts (Becatti et al., 2018; Dimon-Gadal et al., 2000) and were suggested to acquire augmented inflammatory responses upon rechallenge (Crowley et al., 2018).

Overall, these observations indicate a prominent role of dermal fibroblasts in the regulation of inflammatory responses, which goes far beyond the conventional classification of structural cells. To date, however, investigations addressing whether and through which mechanisms dermal fibroblasts contribute to psoriatic manifestations lag far behind studies in other skin cell types.
In this study, we show that TNF-α–stimulated fibroblasts from psoriatic skin lesions display the exaggerated production of specific cytokines (such as IL-6, CXCL8, CXCL2) as compared with fibroblasts derived from paired non-LS (NL) skin. We find this increased cytokine production to be regulated by ZFP36 family members, RNA-binding proteins with mRNA-degrading properties. We further describe that ZFP36 family proteins are suppressed in chronic inflammatory conditions mimicking psoriatic lesions. Overall, our results indicate that fibroblasts are important regulators in psoriatic skin and that their enhanced inflammatory phenotype depends on altered ZFP36 family levels. These data provide insight into PsO pathogenesis and may provide therapeutic opportunities in the future.

RESULTS
Activated dermal fibroblasts share transcriptomic signatures with psoriatic LS skin
To assess how dermal fibroblasts contribute to psoriatic skin manifestations, we retrieved microarray data from whole skin of patients with NL and LS PsO (GSE13355) (Nair et al., 2009) and from unstimulated versus TNF-α–stimulated primary fibroblasts (GSE40560) (Boisson et al., 2012). Although fibroblasts can be activated by other cytokines present in psoriatic skin, such as IL-17 (Billi et al., 2019), our choice to specifically investigate the effects of TNF-α on fibroblasts relied on the high expression of TNF-α receptor (TNFRSF1A) in these cells, which we found approximately 20 times higher than the IL-17 receptor (IL-17RA) (data not shown). The majority (>87%) of the gene IDs were recognized by the probe sets used in the two microarray studies (Supplementary Figure S1a). From these, we found 13,442 differentially expressed genes (DEGs) between NL and LS psoriatic skin and 4,119 DEGs in unstimulated versus TNF-α–stimulated fibroblasts. A total of 3,169 genes, corresponding to 76.9% of all DEGs in TNF-α–stimulated fibroblasts and 23.6% of all DEGs in psoriatic LS skin, were shared in both psoriatic LS skin and TNF-α–stimulated fibroblasts (Figure 1a and Supplementary Table S1).

Among the common DEGs with psoriatic LS skin, fibroblasts were found to be the main producers of proinflammatory genes, including cytokines (CXCL8, CXCL1, CXCL2, CCL20, CCL5), ILs (IL6), guanosine triphosphate cyclohydrolases (GCH1), cell adhesion molecules (VCAM1 and ICAM1), and TNF-α–inducible regulators of cell death (TNFAIP2, BIRC3, CYLD), upregulated either at short (2 hours) and late (6 hours) time points after TNF-α stimulation (Figure 1b and Supplementary Figure S1b and Supplementary Table S2). The common pathways associated with these shared DEGs included typical activating signals of the immune system (Figure 1c). Together, these findings indicate that on TNF-α activation, fibroblasts induce the expression of a great variety of genes partially overlapping with typical PsO-associated signatures.

Dermal fibroblasts contribute to psoriatic-associated inflammatory signatures
Some of the cytokines that displayed the highest expression in fibroblasts, such as IL6 and CXCL1, and CXCL2–8 (Figure 1b), are conventionally known to be produced by KCs (Furue et al., 2019; Patel et al., 2018). Thus, we investigated which cell type between fibroblasts and KCs is a predominant producer of these cytokines. Microarray analysis from TNF-α–stimulated fibroblasts and KCs (GSE154558) (de Stree et al., 2020) revealed that such cytokines are predominantly expressed by fibroblasts (Figure 2a and Supplementary Table S3). Further experimental validation of these findings in isolated primary skin fibroblasts and KCs, which selectively expressed fibroblast marker FGFP7 (KGF) and basal KC marker keratin 14, respectively (Supplementary Figure S2a), confirmed that the expression of IL6 and CXCL8 is approximately 70–80 times higher in TNF-α–stimulated fibroblasts than in KCs (Figure 2b). While retaining a high expression in fibroblasts, other genes such as CCL2 and CCL20 displayed either a similar or lower expression than in KCs (Figure 2b and Supplementary Figure S2a). Furthermore, TNF-α proved to be a main activator of fibroblasts compared with IL-17 (Supplementary Figure S2b).

Once having assessed the mRNA expression of these cytokines in fibroblasts, we next evaluated their production in dermal fibroblasts isolated from LS and NL psoriatic skin. We observed a significantly higher production of IL6, CXCL8, and CXCL2 in TNF-α–stimulated cells derived from LS psoriatic skin than in paired NL skin (Figure 2c), whereas we did not detect baseline cytokine production in unstimulated conditions (data not shown). Overall, these results indicate that dermal fibroblasts from psoriatic LS skin sites retain inflammatory features that could perpetuate local inflammation in psoriatic skin.

Genes upregulated in psoriatic LS skin and TNF-α–stimulated fibroblasts are associated with RNA regulation by adenylate-uridylate–rich elements
To explore the molecular mechanisms that could contribute to the inflammatory phenotype of psoriatic LS skin and in TNF-α–stimulated dermal fibroblasts, we conducted a Gene Set Enrichment Analysis for canonical pathways from the Reactome database. Both psoriatic LS skin and TNF-α–stimulated fibroblasts shared common pathways (Supplementary Table S4). As expected, pathways with the highest normalized enrichment scores included processes associated with immune activation, such as IL cascade, NF-κB, MAPK, and Wnt/β-catenin signaling (Figure 3a), all of which were previously described in psoriatic LS skin (Afonina et al., 2021; Ge˛gotek et al., 2020).

Of interest, one of the most enriched pathways concerned the processes of mRNA stability mediated by adenylate-uridylate–rich element (ARE)-binding proteins (Figure 3a and b). We validated the enrichment of this pathway in an independent microarray study in psoriatic LS skin (Supplementary Figure S3a). This type of mRNA regulation, which relies on the presence of AREs in the 3' untranslated regions (UTRs), has been reported to tightly control cytokine mRNAs (Uchida et al., 2019). We therefore investigated whether DEGs in psoriatic LS skin would also contain AREs in the 3'UTR. We screened for a variety of AREs, including minimal pentameric consensus sequences (Carpenter et al., 2014; Uchida et al., 2019) and other ARE family motifs (Fallmann et al., 2016). We found that 71% of the DEGs in psoriatic LS skin contained at least one pentameric, heptameric, and nonameric ARE family motif in their 3'UTR (Figure 3c and d and
Supplementary Table S5), whereas combinations of other motifs were found in lower percentages. Taken together, these data indicate that the vast majority of mRNAs induced in psoriatic LS skin and TNF-α–stimulated dermal fibroblasts contain AREs and can therefore be potentially regulated at the level of mRNA stability.
ZFP36 family members regulate the expression of TNF-α–inducible cytokines in dermal fibroblasts

Previous reports identified the importance of ZFP36 (TTP), one AREBP in the regulation of psoriatic features in mice (Andrianne et al., 2017; Patial et al., 2016). ZFP36 and ZFP36-like family members ZFP36L1 and ZFP36L2 are mRNA-destabilizing proteins that promote mRNA degradation (Fu and Blackshear, 2017; Sanduja et al., 2011). All the three members share a highly homologous domain, which is predicted to bind the heptameric sequence UAUUUAU (Ciais et al., 2013; Sedlyarov et al., 2016). By analyzing the 3’UTR regions of the DEGs in psoriatic LS fibroblasts, the top 50 genes with the highest expression in TNF-α–stimulated fibroblasts were retrieved from GSE154558. Average linkage clustering and Spearman distance measuring method were used for the Heatmap. Primary skin fibroblasts and keratinocytes were stimulated with TNF-α at different time points, as indicated, and gene expression was assessed by qPCR (n = 4). Dermal fibroblasts derived from either NL or LS skin of individuals with Pso were stimulated with TNF-α for 48 h, and the secretion of IL-6, CXCL8, and CXCL2 in supernatants was measured by ELISA; paired t-test. Statistical significance indicated as *P < 0.05; **P < 0.01. h, hour; LS, lesional; NL, nonlesional; Pso, psoriasis; unstim, unstimulated.
Figure 3. mRNA regulation by ARE is a common enriched pathway in psoriatic LS skin and TNF-α-stimulated fibro. (a) GSEA analyses were conducted on GSE13355 and GSE40560 using the C2.CP.Reactome gene set of the MSigDB database. Enriched pathways with FDR q-value < 0.05 were considered, and common pathways with a minimal NES of 1.7 are shown. Reactome subpathways and related superpathways (hasEvents) are indicated. (b) GSEA enrichment plots for signatures defining AU-rich–mediated mRNA stability, including NES values, are shown for GSE13355 (left panel) and GSE40560 (right panel). (c) IDs of genes containing AREs in their 3'UTR were retrieved from AREsite2 and compared with those of DEGs (3,169) from GSE13355 and GSE40560. W = A (adenine) or U (uracil) nucleotide. (d) Percentages of genes, including ARE family motifs, from total DEGs (3,169) from Figure 1a; purple = 71%; orange = 9%; green = 6.4%; blue = 0.5%; pink = 0.6%; and gray = 12.5%. ARE, adenylate-uridylate–rich element; AU, adenylate-uridylate; DEG, differentially expressed gene; ES, enrichment score; FDR, force discovery rate; GSEA, Gene Set Enrichment Analysis; LS, lesional; NES, normalized enrichment score; Pso, psoriasis; UTR, untranslated region.
Figure 4. ZFP36 family members regulate TNF-α–inducible cytokines in dermal fibro. (a) Genes containing UAUUUAU in their 3’UTR were retrieved from AREsite2 and compared with DEGs (3,169) from Figure 1a by Venn Diagram. (b) mRNAs immunoprecipitated with proteins recognized by either ZFP36, ZFP36L1/2, or IgG antibodies were subject to qPCR analysis; Friedman test was performed followed by Benjamini–Yekutieli FDR correction (n = 4). (c, d) Fibroblasts were transfected with either siCtrl or specific siRNAs targeting ZFP36 (siZFP36), ZFP36L1 (siZFP36L1), or ZFP36L2 (siZFP36L2). Knockdown efficiency was verified by qPCR; (c) paired t-test and (d) western blot. (e, f) Fibroblasts (n = 8) transfected as in c and d were stimulated with TNF-α for 8 hours. Effects of ZFP36 family knockdown on cytokine expression were assessed by (e) qPCR and (f) ELISA. In e and f, the significant differences between siCtrl and siZFP36/L1/L2 were assessed by Wilcoxon test. (d) Shows the representative pictures of three independent experiments. Statistical significance indicated as *P < 0.05; **P < 0.01; ****P < 0.0001. Ctrl, control; DEG, differentially expressed gene; fibro, fibroblast; LS, lesional; Pso, psoriasis; siCtrl, small interfering RNA targeting control; siRNA, small interfering RNA; siZFP36, small interfering RNA targeting ZFP36; siZFP36L1, small interfering RNA targeting ZFP36L1; siZFP36L2, small interfering RNA targeting ZFP36L2; UTR, untranslated region.
skin and TNF-α–stimulated fibroblasts, we found that 1,243 genes (39.2% of the DEGs) contained at least one UAUUUAUU sequence (Figure 4a). These genes included, among others, Il6, Cxcl8, Cxcl2, and Ccl5 (Supplementary Table S5).

To evaluate whether the mRNA of the DEGs effectively bind ZFP36 members in vitro, we immunoprecipitated ZFP36 and ZFP36L1/2 in TNF-α–stimulated fibroblasts and compared the bound mRNA from the specific pulldown with IgG control (Figure 4b). We included TNF and CCL5 as positive and negative controls, respectively, because all ZFP36 members were shown to interact with TNF mRNA (Ciais et al., 2013) but not with CCL5 mRNA, whose 3’UTR lacks AREs (Fallmann et al., 2016) (Figure 4b and Supplementary Figure S3b). All screened cytokine mRNAs bound to ZFP36L1/2, whereas Il6 and Cxcl8 mRNAs did not bind to ZFP36. These results differ from what was previously observed in other cell types (Angiolilli et al., 2018; Sedlyarov et al., 2016), suggesting cell- and context-dependent functions of ZFP36.

We next investigated whether the knockdown of ZFP36 members would also lead to increased expression of target cytokines. We silenced all individual ZFP36 members using small interfering RNAs (Figure 4c and d) and observed that for some cytokines, the results from the silencing assay were consistent with those from the RNA immunoprecipitation assays (Figure 4e). We validated that the single knockdown of ZFP36L1 causes not only higher mRNA expression but also higher production of IL6, whereas the knockdown of ZFP36 and ZFP36L2 increases the expression and production of CXCL2 and CXCL8, respectively (Figure 4f and Supplementary Figure S4a and b). Taken together, these data suggest that ZFP36 proteins regulate subsets of Pso-associated cytokine mRNAs in fibroblasts.

ZFP36 members are downregulated in psoriatic skin compared with that in atopic dermatitis skin

To gain more insights into the specific involvement of ZFP36 members in different inflammatory skin diseases, we compared psoriatic and atopic dermatitis (AD) skin transcriptomes (Tsui et al., 2019). We observed that all ZFP36 members were downregulated in psoriatic LS skin when compared with those in AD LS skin and were downregulated in psoriatic NL skin compared with those in AD NL skin (Figure 5a). We validated these findings in dermal fibroblasts isolated from psoriatic and AD NL and LS skin (Figure 5b) and further observed that in the datasets used in this study, the expression of ZFP36L1 and ZFP36L2 was also downregulated in psoriatic NL skin compared with that in healthy skin (Supplementary Figure S5a and b). These results indicate that these proteins could contribute to the preinflammatory phase in Pso development.

Chronic exposure to TNF-α in fibroblasts leads to the suppression of ZFP36 members and the overexpression of inflammatory cytokines

Early inflammatory signatures in psoriatic skin were associated with TNF-α and IL-17 signaling and suggested to initiate psoriatic manifestations (Boymann et al., 2004; Khalil et al., 2020; Szé et al., 2019). Thus, we investigated whether chronic inflammatory exposure to such cytokines could influence ZFP36 family expression in dermal fibroblasts. We adopted a model in which cells were either stimulated daily with TNF-α, rested and restimulated with TNF-α (chronic model), or stimulated once with TNF-α (acute model) (Figure 6a). Profound changes were observed in expression for all the three ZFP36 members between the acute and chronic model, with all members being induced by acute TNF-α stimulation and unaffected or suppressed by chronic TNF-α (Figure 6b). As expected, the downregulation of ZFP36...

Figure 5. ZFP36 members are downregulated in psoriatic skin versus in AD skin. (a) Transcripts levels of NL and LS skin of individuals with Pso and AD from the GSE121212 dataset were normalized using GREIN. The expression of ZFP36 members is shown. Significance was assessed by Mann–Whitney test. (b) Expression of ZFP36 members in dermal fibroblasts from NL and LS skin of individuals with Pso and AD was measured by qPCR analysis. Significance was assessed by Mann–Whitney test. Statistical significance indicated as *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. AD, atopic dermatitis; GREIN, Gene Expression Omnibus RNA-sequencing Experiments Interactive Navigator; LS, lesional; NL, nonlesional; Pso, psoriasis.
members was also concomitant with increased cytokine expression, both at mRNA and protein levels (Figure 6c and d). Ultimately, we observed that the most prominent cytokine induction and ZFP36 family suppression occurred after chronic TNF-\(\alpha\) but not after IL-17 stimulation (Supplementary Figure S6a and b).

In conclusion, these data indicate that reduced ZFP36 family expression in psoriatic skin could be a consequence of chronic TNF-\(\alpha\) exposure, which further potentiates cytokine production in dermal fibroblasts.

DISCUSSION
Dermal fibroblasts constantly interact with the cells of the immune system and the epidermis. On activation, these cells contribute to the upregulation of proinflammatory factors that recruit immune cells in the dermis and promote KC proliferation (Gubán et al., 2016). Therefore, fibroblasts are likely to play a crucial role in the development of psoriatic lesions (Gegotek et al., 2020). Despite this evidence, dermal fibroblasts are often considered the forgotten cells of the innate immune memory (Crowley et al., 2018) because they remain largely understudied.

With this work, we aimed to investigate whether and through which pathways dermal fibroblasts can impact psoriatic manifestations. Our results indicate that a large percentage (>75%) of DEGs in activated (TNF-\(\alpha\)-stimulated) fibroblasts are also commonly dysregulated in psoriatic skin lesions. Furthermore, the expression of multiple cytokines...
known for their proinflammatory functions in acute inflammatory conditions (Wang et al., 2009) and mostly annotated to KCs, such as CXCL8 and IL-6 (Patel et al., 2018), was found higher in fibroblasts than in KCs.

Conversely, IL-17 and IL-23, two major players in Psoriasis pathogenesis (Billi et al., 2019), were not expressed in stimulated fibroblasts (data not shown). Overall, these data suggest that dermal fibroblasts can significantly contribute to the inflammatory features of psoriatic skin, albeit not directly sustaining IL-23/IL-17 production.

Of interest, we found that fibroblasts derived from psoriatic LS skin retained ex vivo proinflammatory features after different cell passages, compared with those from NL skin counterparts. We could mimic these enhanced inflammatory features by chronically stimulating NL skin fibroblasts with TNF-α. These results suggest that dermal fibroblasts can possibly acquire an innate immune memory after chronic activation. Our observations are in line with similar reports in synovial and gingival fibroblasts (Gangishetti et al., 2020; Jurdziński et al., 2020), indicating that immune memory could be a common feature in stromal cells.

By exploring the signaling pathways enriched in psoriatic LS skin and TNF-α fibroblasts, we found that one pathway, underexplored in skin fibroblasts but proven to be relevant for Psoriasis development (Andrianne et al., 2017; Patial et al., 2016), concerned the processes of regulation of mRNA stability by AREs. This type of post-transcriptional regulation was shown to control cytokine expression in immune cells and to prevent hyperinflammation (Uchida et al., 2019). Under physiological conditions, the mRNA of proinflammatory genes is constantly degraded by AREBPs, which allows a rapid control of gene expression. About 5% of the human transcriptome contains AREs in their mRNA 3′UTRs (Bakheet et al., 2018; Ripin et al., 2019). In this study, we showed that 87.5% of DEGs common in psoriatic LS skin and TNF-α-stimulated fibroblasts contain different types of AREs, highlighting the importance of such regulatory elements in Psoriasis manifestations.

Mammalian AREBPs that regulate inflammatory mRNAs include the ZFP36/TIS11 family members ZFP36 (TTP), ZFP36L1 (BRF1), and ZFP36L2 (BRF2) (Ciais et al., 2013). Whereas the RNA-binding domain of the ZFP36 members is highly homologous (Blackshear and Perera, 2014), suggesting that these proteins may bind to similar consensus sites and play similar roles, our data show that despite sharing in silico predicted binding sites for ZFP36 family, inflammatory mRNAs differently bind to ZFP36 and ZFP36L1/2. In addition, our silencing experiments indicate that the modulation of inflammatory mRNAs differs per ZFP36 family member. These results are in line with in vivo evidence of the different phenotypes obtained from the respective knockout models (Ciais et al., 2013), which indicates distinct functions of ZFP36 members. We further verified that the knockdown of each ZFP36 member does not lead to the upregulation of the other family members (Supplementary Figure S3c), also suggesting possibly minimal compensatory functions in fibroblasts.

KC-specific knockout of Zfp36 was previously found to aggravate Psoriasis manifestations in mice, and ZFP36 mRNA was found reduced in the epidermis of patients with Psoriasis, compared with that in the epidermis of healthy individuals (Andrianne et al., 2017). These observations, combined with our results, indicate that ZFP36 and other ZFP36 members play an important role in dermal fibroblasts and not only in KCs and that further studies are needed to define fibroblast-specific contributions of ZFP36 members in Psoriasis manifestations. Furthermore, we did not observe differences in ZFP36 family expression between papillary and reticular fibroblasts, two major subsets of dermal fibroblasts (Ascensión et al., 2020), which suggests a conserved role of ZFP36 proteins in these cells.

Psoriasis is notoriously characterized by an IL-17/TNF-α inflammatory signature, distinct from the IL-13/IL-4 signature in AD (Dainichi et al., 2018). However, what is not yet defined is what contributes to the specific inflammatory profile of Psoriasis. We found that all ZFP36 members were reduced in psoriatic LS skin compared with those in AD LS skin and obtained similar results in skin fibroblasts. On chronically exposing skin fibroblasts to TNF-α, we further observed that all ZFP36 members displayed a reduced expression, compared with those exposed to the acute TNF-α model.

Although it is currently not known what may cause the differential expression of ZFP36 members in Psoriasis and AD, GWASs of patients with Psoriasis did not identify susceptibility variants in the ZFP36 regions. Rather, reduced ZFP36 expression in the skin was suggested to be a consequence of recurrent inflammation (Andrianne et al., 2017). As such, reduced ZFP36 family expression in NL skin may represent a first-hit molecular event, which prepares the skin to inflammatory LS manifestations on second-hit events (such as after köebnerization) (Ji and Liu, 2019). Furthermore, because ZFP36 selective depletion in the epidermis was shown to initiate not only Psoriasis but also arthritis development (Andrianne et al., 2017), it is possible that initial ZFP36 family alterations in the skin could contribute to psoriatic arthritis, one of the most severe complications in patients with Psoriasis (Scher et al., 2019).

The evidence that fibroblasts from different anatomic locations can retain an inflammatory memory is growing. In this study, we provide evidence that fibroblasts from LS psoriatic skin maintain proinflammatory properties ex vivo. Thus, it is possible that dermal fibroblasts contribute to the development or continuation of Psoriasis.

We further provide, to our knowledge, previously unreported evidence that ZFP36 members contribute to the inflammatory features of dermal fibroblasts (graphical abstract). Transcriptomic profiles of ZFP36 family–knockout fibroblasts, fibroblast-specific depletion of ZFP36 members in animal models, as well as transcriptome-wide identification of mRNA targets will be needed to assess the broader contributions of these AREBPs in fibroblasts. Nonetheless, the development of compounds able to modulate the activity of ZFP36 members, which have already shown success in a clinical trial on patients with Psoriasis (Colin et al., 2014), holds potential for further preclinical investigations in Psoriasis and other inflammatory diseases.

MATERIALS AND METHODS

Patients and skin samples

Punch biopsies (4 mm) were taken from LS and NL skin locations from patients with a dermatologist-confirmed diagnosis of Psoriasis or
AD. Informed written consent was obtained from all patients enrolled in the study. The study was approved by the medical ethics committee of the University Medical Center Utrecht, University of Utrecht, The Netherlands (METC 15-429/M and METC 12-407). All samples and clinical information were treated anonymously. Patients with Pso did not receive systemic drugs or UV light therapy for Pso treatment and were instructed not to use topical steroids or other creams for 2 weeks in advance of their biopsy. Patients with AD were treated with topical steroids only. Once collected, skin biopsies were immediately digested for dermal fibroblasts isolation. Healthy skin biopsies were obtained as resected material after cosmetic surgery after institutional ethical approval.

RNA immunoprecipitation assay
Fibroblasts were cultured overnight in 10% fetal bovine serum DMEM, after which cells were serum starved for 16 hours. Cells were stimulated with 10 ng/ml TNF-α for 2 hours and were subsequently washed with cold PBS and lysed for 30 minutes in RNA immunoprecipitation buffer (1% NP-40, 150 mM sodium chloride, 50 mM Tris hydrochloric acid pH 8.0, 1 mM magnesium chloride, 10% glycerol, 1 mM dithiothreitol) supplemented with 50 mM sodium fluoride, 1 mM sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride, 0.5% aprotinin (all from Sigma-Aldrich, St. Louis, MO), and 100 U/ml RNase inhibitor Ribolock (Fermentas, Waltham, MA). Antibodies specific for ZFP36/TTP (Merck, Darmstadt, Germany), ZFP36L1/2 (Cell Signaling Technology, Danvers, MA), and control rabbit IgG (Dako Glostrup, Denmark) were added to the lysates for 6 hours at 4 °C, and A/G beads (Santa Cruz Biotechnology, Dallas, TX) were added for 2 hours at 4 °C. The samples were lysed in RLT buffer with 1:100 β-mercaptoethanol (Qiagen, Hilden, Germany) and were further processed for qPCR without normalizing the input of reverse-transcribed RNA.

Small interfering RNA transfection
Fibroblasts were transfected using DharmaFECT1 (Thermo Fisher Scientific, Waltham, MA). The day before transfection, cells were maintained in DMEM containing 10% fetal bovine serum. On transfection, DMEM was replaced by OPTI-MEM (Thermo Fisher Scientific, Waltham, MA). The day before transfection, cells were transfected using DharmaFECT1 (Thermo Fisher Scientific, Waltham, MA), ZFP36L1/2 (Cell Signaling Technology, Danvers, MA), and control rabbit IgG (Dako Glostrup, Denmark) were added to the lysates for 6 hours at 4 °C, and A/G beads (Santa Cruz Biotechnology, Dallas, TX) were added for 2 hours at 4 °C. The samples were lysed in RLT buffer with 1:100 β-mercaptoethanol (Qiagen, Hilden, Germany) and were further processed for qPCR without normalizing the input of reverse-transcribed RNA.

Analysis of adenylate-uridylate–rich motifs
The lists of Ensemble gene IDs containing AREs in their 3′ UTR were retrieved from AREsite2 database (Fallmann et al., 2016) and were converted to Entrez gene IDs using org.Hs.eg.db Bioconductor package in RStudio.

Gene Set Enrichment analysis
Series matrix files from Gene Expression Omnibus (GEO) dataset GSE13355 (Nair et al., 2009) and GSE40560 (Boisson et al., 2012) were analyzed with Gene Set Enrichment Analysis software (version 4.1.0). Ranking was based on t-test and weighted enrichment statistics. A total of 1,000 permutations on the phenotype (LS versus NL psoriatic skin and TNF-α–stimulated versus –unstimulated fibroblasts from GSE13355 and GSE40560, respectively) were allowed per analysis. The database used for analysis was C2.CP.Reactome (version 7.2), which includes curated gene sets belonging to Reactome-enriched canonical pathways. Significant signatures were shortlisted on the basis of the force discovery rate–corrected P-value (q-value) and listed on the basis of normalized enrichment score. Normalized enrichment scores were plotted in heatmap using Morpheus software (Morpheus Data, Greenwood Village, CO) (software.broadinstitute.org/Morpheus). GEO dataset GSE14905 (Yao et al., 2008) used for validation purposes was subjected to the same analysis criteria by comparing LS with NL psoriatic skin samples.

GEO datasets analysis
DEGs (P < 0.05) in LS versus those in NL psoriatic skin and those in TNF-α–stimulated versus those in –unstimulated fibroblasts from GSE13355 and GSE40560, respectively, were analyzed in GEO2R. Illumina HumanHT-12, version 4.0 (Illumina, San Diego, CA), probe sets from GSE40560 (GPL10558 platform) and Affymetrix Human Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA) probe sets from GSE13355 (GPL570 HG-U133_Plus_2 platform) were converted to Entrez gene IDs using org.Hs.eg.db Bioconductor package in RStudio. Shared gene IDs (3169) were illustrated using EnhancedVolcano Bioconductor package in RStudio and analyzed by Reactome Pathway Analysis Bioconductor package in RStudio by setting the adjusted P-value cutoff at 0.05.

Affymetrix Human Genome U133A 2.0 Array probe sets from GSE154558 (GPL571 HG-U133A_2 platform) (de Streekl et al., 2020) were converted to Entrez gene IDs using org.Hs.eg.db Bioconductor package in RStudio. The expression of gene IDs from the comparison of GSE13355 and GSE40560 studies was retrieved in TNF-α–stimulated fibroblasts and KCs from GSE154558. Expression values were plotted in heatmap using Morpheus software.

GEO RNA-sequencing Experiments Interactive Navigator (Mahi et al., 2019) was used to retrieve normalized transcript levels from the GEO dataset GSE121212 (Tsoi et al., 2019), whereas RMAExpress software (https://rmaexpress.bmbolstad.com/) was used to perform Robust Multi-array Average analysis of CEL files from GSE13355. For the latter, default background correction and quantile normalization were adopted.

Additional materials and methods on skin collection, cell culture, RNA extraction and qPCR, ELISA, western blot, and statistical analysis are provided in Supplementary Materials and Methods.

Data availability statement
Series matrix files are accessible from the deposited GSE13355, GSE40560, GSE154558, and GSE121212 Gene Expression Omnibus datasets. We provide the processed data used for this study as Supplementary Materials.

ORCIDs
Chiara Angiolilli: http://orcid.org/0000-0003-1404-4429
Emmerik F.A. Leijten: http://orcid.org/0000-0001-7367-0185
Cornelis P.J. Bekker: http://orcid.org/0000-0002-3966-9639
Ella Eeftink: http://orcid.org/0000-0002-7795-9215
Barbara Giovannone: http://orcid.org/0000-0003-3143-1922
Michel Olde Nordkamp: http://orcid.org/0000-0002-8499-5778
Marlot van der Wal: http://orcid.org/0000-0003-4554-9059
Judith L. Thijss: http://orcid.org/0000-0003-2753-5235
Sebastiaan J. Vastert: http://orcid.org/0000-0002-4226-0949
Femke van Wijk: http://orcid.org/0000-0001-8343-1356
Michel Olde Nordkamp: http://orcid.org/0000-0003-4554-9059
Barbara Giovannone: http://orcid.org/0000-0003-3143-1922
Michel Olde Nordkamp: http://orcid.org/0000-0002-8499-5778
Marlot van der Wal: http://orcid.org/0000-0003-4554-9059
Judith L. Thijss: http://orcid.org/0000-0003-2753-5235
Sebastiaan J. Vastert: http://orcid.org/0000-0002-4226-0949
Femke van Wijk: http://orcid.org/0000-0001-8343-1356
Timothy R.J.D. Radstake: http://orcid.org/0000-0003-1241-6911
Jorg van Loosdregt: http://orcid.org/0000-0003-1411-3754

AUTHOR CONTRIBUTIONS
Conceptualization: CA, EFAL, TRDJR, JVL; Data Curation: CA, EE; Formal Analysis: CA, EE; Funding Acquisition: SJV, TRDJR, JVL; Investigation: CA, CPJB, EE, BG; Methodology: CA, CPJB, EE; Project Administration: SJV, TRDJR, JVL;
CONFLICT OF INTEREST
The authors state no conflict of interest.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at www.jidonline.org, and at https://doi.org/10.1016/j.jid.2021.06.030.

REFERENCES
Patal AB, Tsiolioni I, Weng Z, Theoharides TC. TNF stimulates IL-6, CXCL8 and VEGF secretion from human keratinocytes via activation of mTOR, inhibited by tetramethoxyxietol. Exp Dermatol 2018;27:135–43.

C Angiolilli et al.
Role of ZFP36 Proteins in Psoriasis Fibroblasts

Resources: EFAL, BG, MON, MVDW, JLT; Supervision: CA, FVW, TRDJR, JVL; Writing - Original Draft Preparation: CA; Writing - Review and Editing: CA, EFAL, CFJP, SJV, FVW, JVL

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/