Journal of Investigative Dermatology Home

IRF6 Regulates the Delivery of E-Cadherin to the Plasma Membrane

  • Angelo Antiguas
    Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
    Search for articles by this author
  • Kris A. DeMali
    Department of Biochemistry and Molecular Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA

    Department of Dermatology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
    Search for articles by this author
  • Martine Dunnwald
    Correspondence: Martine Dunnwald, Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, 1-532 Bowen Science Building, 51 Newton Road, Iowa City, Iowa 52242, USA.
    Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
    Search for articles by this author
      IRF6 is a transcription factor that is required for craniofacial development and epidermal morphogenesis. Specifically, Irf6-deficient mice lack the terminally differentiated epidermal layers, leading to an absence of barrier function. This phenotype also includes intraoral adhesions due to the absence of the oral periderm, leading to the mislocalization of E-cadherin and other cell‒cell adhesion proteins of the oral epithelium. However, the mechanisms by which IRF6 controls the localization of cell adhesion proteins are not understood. In this study, we show that in human and murine keratinocytes, loss of IRF6 leads to a breakdown of epidermal sheets after mechanical stress. This defect is due to a reduction of adhesion proteins at the plasma membrane. Dynamin inhibitors rescued the IRF6-dependent resistance of epidermal sheets to mechanical stress, but only inhibition of clathrin-mediated endocytosis rescued the localization of junctional proteins at the membrane. Our data show that E-cadherin recycling but not its endocytosis is affected by loss of IRF6. Overall, we demonstrate a role for IRF6 in the delivery of adhesion proteins to the cell membrane.


      AJ (adherens junction), HFK (human foreskin keratinocyte), KC (keratinocyte), sh (short hairpin), WT (wild type)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      PDF Download and 24 Hours Online Access
      Society Members (SID/ESDR), remember to log in for access.


      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Adams C.L.
        • Nelson W.J.
        • Smith S.J.
        Quantitative analysis of cadherin-catenin-actin reorganization during development of cell-cell adhesion.
        J Cell Biol. 1996; 135: 1899-1911
        • Bailey C.M.
        • Khalkhali-Ellis Z.
        • Kondo S.
        • Margaryan N.V.
        • Seftor R.E.
        • Wheaton W.W.
        • et al.
        Mammary serine protease inhibitor (Maspin) binds directly to interferon regulatory factor 6: identification of a novel serpin partnership.
        J Biol Chem. 2005; 280: 34210-34217
        • Bays J.L.
        • Campbell H.K.
        • Heidema C.
        • Sebbagh M.
        • DeMali K.A.
        Linking E-cadherin mechanotransduction to cell metabolism through force-mediated activation of AMPK.
        Nat Cell Biol. 2017; 19: 724-731
        • Behrens J.
        • Birchmeier W.
        • Goodman S.L.
        • Imhof B.A.
        Dissociation of Madin-Darby canine kidney epithelial cells by the monoclonal antibody anti-arc-1: mechanistic aspects and identification of the antigen as a component related to uvomorulin.
        J Cell Biol. 1985; 101: 1307-1315
        • Biggs L.C.
        • Naridze R.L.
        • DeMali K.A.
        • Lusche D.F.
        • Kuhl S.
        • Soll D.R.
        • et al.
        Interferon regulatory factor 6 regulates keratinocyte migration.
        J Cell Sci. 2014; 127: 2840-2848
        • Biggs L.C.
        • Rhea L.
        • Schutte B.C.
        • Dunnwald M.
        Interferon regulatory factor 6 is necessary, but not sufficient, for keratinocyte differentiation.
        J Invest Dermatol. 2012; 132: 50-58
        • Botti E.
        • Spallone G.
        • Moretti F.
        • Marinari B.
        • Pinetti V.
        • Galanti S.
        • et al.
        Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas.
        Proc Natl Acad Sci USA. 2011; 108: 13710-13715
        • Brüser L.
        • Bogdan S.
        Adherens junctions on the move-membrane trafficking of E-cadherin.
        Cold Spring Harb Perspect Biol. 2017; 9: a029140
        • Cavey M.
        • Lecuit T.
        Molecular bases of cell-cell junctions stability and dynamics.
        Cold Spring Harb Perspect Biol. 2009; 1: a002998
        • Chiasson C.M.
        • Wittich K.B.
        • Vincent P.A.
        • Faundez V.
        • Kowalczyk A.P.
        p120-catenin inhibits VE-cadherin internalization through a rho-independent mechanism.
        Mol Biol Cell. 2009; 20: 1970-1980
        • Darbro B.W.
        • Schneider G.B.
        • Klingelhutz A.J.
        Co-regulation of p16INK4a and migratory genes in culture conditions that lead to premature senescence in human keratinocytes.
        J Invest Dermatol. 2005; 125: 499-509
        • Davis M.A.
        • Ireton R.C.
        • Reynolds A.B.
        A core function for p120-catenin in cadherin turnover.
        J Cell Biol. 2003; 163: 525-534
        • Furuse M.
        • Hata M.
        • Furuse K.
        • Yoshida Y.
        • Haratake A.
        • Sugitani Y.
        • et al.
        Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice.
        J Cell Biol. 2002; 156: 1099-1111
        • Geng F.
        • Zhu W.
        • Anderson R.A.
        • Leber B.
        • Andrews D.W.
        Multiple post-translational modifications regulate E-cadherin transport during apoptosis.
        J Cell Sci. 2012; 125: 2615-2625
        • Graeve L.
        • Drickamer K.
        • Rodriguez-Boulan E.
        Polarized endocytosis by Madin-Darby canine kidney cells transfected with functional chicken liver glycoprotein receptor.
        J Cell Biol. 1989; 109: 2809-2816
        • Gumbiner B.
        • Stevenson B.
        • Grimaldi A.
        The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex.
        J Cell Biol. 1988; 107: 1575-1587
        • Hunter M.V.
        • Lee D.M.
        • Harris T.J.
        • Fernandez-Gonzalez R.
        Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair.
        J Cell Biol. 2015; 210: 801-816
        • Ingraham C.R.
        • Kinoshita A.
        • Kondo S.
        • Yang B.
        • Sajan S.
        • Trout K.J.
        • et al.
        Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6).
        Nat Genet. 2006; 38: 1335-1340
        • Kimura-Yoshida C.
        • Mochida K.
        • Nakaya M.A.
        • Mizutani T.
        • Matsuo I.
        Cytoplasmic localization of GRHL3 upon epidermal differentiation triggers cell shape change for epithelial morphogenesis [published correction appears in Nat Commun 2018;9:4959].
        Nat Commun. 2018; 9: 4059
        • Little H.J.
        • Rorick N.K.
        • Su L.I.
        • Baldock C.
        • Malhotra S.
        • Jowitt T.
        • et al.
        Missense mutations that cause Van der Woude syndrome and popliteal pterygium syndrome affect the DNA-binding and transcriptional activation functions of IRF6 [published correction appears in Hum Mol Genet 2009;18:1544].
        Hum Mol Genet. 2009; 18: 535-545
        • Madison K.C.
        Barrier function of the skin: “la raison d’être” of the epidermis.
        J Invest Dermatol. 2003; 121: 231-241
        • Maiers J.L.
        • Peng X.
        • Fanning A.S.
        • DeMali K.A.
        ZO-1 recruitment to α-catenin--a novel mechanism for coupling the assembly of tight junctions to adherens junctions.
        J Cell Sci. 2013; 126: 3904-3915
        • Mertz A.F.
        • Che Y.
        • Banerjee S.
        • Goldstein J.M.
        • Rosowski K.A.
        • Revilla S.F.
        • et al.
        Cadherin-based intercellular adhesions organize epithelial cell–matrix traction forces.
        Proc Natl Acad Sci USA. 2013; 110: 842-847
        • Morita K.
        • Itoh M.
        • Saitou M.
        • Ando-Akatsuka Y.
        • Furuse M.
        • Yoneda K.
        • et al.
        Subcellular distribution of tight junction-associated proteins (occludin, ZO-1, ZO-2) in rodent skin.
        J Invest Dermatol. 1998; 110: 862-866
        • Müller S.L.
        • Portwich M.
        • Schmidt A.
        • Utepbergenov D.I.
        • Huber O.
        • Blasig I.E.
        • et al.
        The tight junction protein occludin and the adherens junction protein alpha-catenin share a common interaction mechanism with ZO-1.
        J Biol Chem. 2005; 280: 3747-3756
        • Nagafuchi A.
        • Takeichi M.
        Cell binding function of E-cadherin is regulated by the cytoplasmic domain.
        EMBO J. 1988; 7: 3679-3684
        • Nanes B.A.
        • Grimsley-Myers C.M.
        • Cadwell C.M.
        • Robinson B.S.
        • Lowery A.M.
        • Vincent P.A.
        • et al.
        p120-catenin regulates VE-cadherin endocytosis and degradation induced by the Kaposi sarcoma–associated ubiquitin ligase K5.
        Mol Biol Cell. 2017; 28: 30-40
        • Ohashi K.
        • Fujiwara S.
        • Mizuno K.
        Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction.
        J Biochem. 2017; 161: 245-254
        • Ooshio T.
        • Kobayashi R.
        • Ikeda W.
        • Miyata M.
        • Fukumoto Y.
        • Matsuzawa N.
        • et al.
        Involvement of the interaction of afadin with ZO-1 in the formation of tight junctions in Madin-Darby canine kidney cells.
        J Biol Chem. 2010; 285: 5003-5012
        • Palacios F.
        • Schweitzer J.K.
        • Boshans R.L.
        • D’Souza-Schorey C.
        ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly.
        Nat Cell Biol. 2002; 4: 929-936
        • Parada-Sanchez M.T.
        • Chu E.Y.
        • Cox L.L.
        • Undurty S.S.
        • Standley J.M.
        • Murray J.C.
        • et al.
        Disrupted IRF6-NME1/2 complexes as a cause of cleft lip/palate.
        J Dent Res. 2017; 96: 1330-1338
        • Peyrard-Janvid M.
        • Leslie E.J.
        • Kousa Y.A.
        • Smith T.L.
        • Dunnwald M.
        • Magnusson M.
        • et al.
        Dominant mutations in GRHL3 cause Van der Woude syndrome and disrupt oral periderm development.
        Am J Hum Genet. 2014; 94: 23-32
        • Rajasekaran A.K.
        • Hojo M.
        • Huima T.
        • Rodriguez-Boulan E.
        Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions.
        J Cell Biol. 1996; 132: 451-463
        • Richardson R.J.
        • Hammond N.L.
        • Coulombe P.A.
        • Saloranta C.
        • Nousiainen H.O.
        • Salonen R.
        • et al.
        Periderm prevents pathological epithelial adhesions during embryogenesis.
        J Clin Invest. 2014; 124: 3891-3900
        • Rübsam M.
        • Mertz A.F.
        • Kubo A.
        • Marg S.
        • Jüngst C.
        • Goranci-Buzhala G.
        • et al.
        E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning.
        Nat Commun. 2017; 8: 1250
        • Schlüter H.
        • Wepf R.
        • Moll I.
        • Franke W.W.
        Sealing the live part of the skin: the integrated meshwork of desmosomes, tight junctions and curvilinear ridge structures in the cells of the uppermost granular layer of the human epidermis.
        Eur J Cell Biol. 2004; 83: 655-665
        • Shafraz O.M.
        • Stahley S.N.
        • Sankar K.
        • Jernigan R.L.
        • Kowalczyk A.P.
        • Sivasankar S.
        E-cadherin functions as a desmoglein transporter that facilitates assembly of nascent desmosomes.
        Biophys J. 2017; 112: 166a-167a
        • Takeichi M.
        Cadherin cell adhesion receptors as a morphogenetic regulator.
        Science. 1991; 251: 1451-1455
        • Taniguchi T.
        • Ogasawara K.
        • Takaoka A.
        • Tanaka N.
        IRF family of transcription factors as regulators of host defense.
        Annu Rev Immunol. 2001; 19: 623-655
        • Tao Y.S.
        • Edwards R.A.
        • Tubb B.
        • Wang S.
        • Bryan J.
        • McCrea P.D.
        Beta-catenin associates with the actin-bundling protein fascin in a noncadherin complex.
        J Cell Biol. 1996; 134: 1271-1281
        • Truffi M.
        • Dubreuil V.
        • Liang X.
        • Vacaresse N.
        • Nigon F.
        • Han S.P.
        • et al.
        RPTPα controls epithelial adherens junctions, linking E-cadherin engagement to c-Src-mediated phosphorylation of cortactin.
        J Cell Sci. 2014; 127: 2420-2432
        • Tunggal J.A.
        • Helfrich I.
        • Schmitz A.
        • Schwarz H.
        • Günzel D.
        • Fromm M.
        • et al.
        E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions.
        EMBO J. 2005; 24: 1146-1156
        • Wandinger-Ness A.
        • Zerial M.
        Rab proteins and the compartmentalization of the endosomal system.
        Cold Spring Harb Perspect Biol. 2014; 6: a022616
        • Xiao K.
        • Allison D.F.
        • Buckley K.M.
        • Kottke M.D.
        • Vincent P.A.
        • Faundez V.
        • et al.
        Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells.
        J Cell Biol. 2003; 163: 535-545
        • Yap A.S.
        • Duszyc K.
        • Viasnoff V.
        Mechanosensing and Mechanotransduction at Cell-Cell Junctions.
        Cold Spring Harb Perspect Biol. 2018; 10: a028761
        • Zhang W.
        • Alt-Holland A.
        • Margulis A.
        • Shamis Y.
        • Fusenig N.E.
        • Rodeck U.
        • et al.
        E-cadherin loss promotes the initiation of squamous cell carcinoma invasion through modulation of integrin-mediated adhesion.
        J Cell Sci. 2006; 119: 283-291