Advertisement
Journal of Investigative Dermatology Home

PHLDA3 Is an Important Downstream Mediator of p53 in Squamous Cell Carcinogenesis

Published:September 26, 2021DOI:https://doi.org/10.1016/j.jid.2021.09.007
      Squamous cell carcinomas (SCCs) are one of the most frequent solid cancer types in humans and are derived from stratified epithelial cells found in various organs. SCCs derived from various organs share common important properties, including genomic abnormalities in the tumor suppressor gene p53. There is a carcinogen-induced mouse model of SCC that produces benign papilloma, some of which progress to advanced carcinoma and metastatic SCCs. These SCCs undergo key genetic alterations that are conserved between humans and mice, including alterations in the genomic p53 sequence, and are therefore an ideal system to study the mechanisms of SCC tumorigenesis. Using this SCC model, we show that the PHLDA3 gene, a p53-target gene encoding a protein kinase B repressor, is involved in the suppression of benign and metastatic tumor development. Loss of PHLDA3 induces an epithelial‒mesenchymal transition and can complement p53 loss in the formation of metastatic tumors. We also show that in human patients with SCC, low PHLDA3 expression is associated with a poorer prognosis. Collectively, this study identifies PHLDA3 as an important downstream molecule of p53 involved in SCC development and progression.

      Abbreviations:

      Akt (protein kinase B), cSCC (cutaneous squamous cell carcinoma), DMBA (7,12-dimethylbenz(a)anthracene), EMT (epithelial‒mesenchymal transition), HF (hair follicle), IFE (interfollicular epidermis), KC (keratinocyte), LOH (loss of heterozygosity), NET (neuroendocrine tumor), SCC (squamous cell carcinoma), TPA (12-O-tetradecanoylphorbol-13-acetate)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      PDF Download and 24 Hours Online Access
      Society Members (SID/ESDR), remember to log in for access.

      Subscribe:

      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abel E.L.
        • Angel J.M.
        • Kiguchi K.
        • DiGiovanni J.
        Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications.
        Nat Protoc. 2009; 4: 1350-1362
        • Cancer Genome Atlas Network
        Comprehensive genomic characterization of head and neck squamous cell carcinomas.
        Nature. 2015; 517: 576-582
        • Cancer Genome Atlas Research Network
        Comprehensive genomic characterization of squamous cell lung cancers [published correction appears in Nature 2012;491:288].
        Nature. 2012; 489: 519-525
        • Cancer Genome Atlas Research Network, Analysis Working Group: Asan University, BC Cancer Agency, Brigham and Women’s Hospital, Broad Institute, Brown University
        • et al.
        Integrated genomic characterization of oesophageal carcinoma.
        Nature. 2017; 541: 169-175
        • Chen Y.
        • Ohki R.
        p53-PHLDA3-Akt network: the key regulators of neuroendocrine tumorigenesis.
        Int J Mol Sci. 2020; 21: 4098
        • Chen Y.
        • Takikawa M.
        • Tsutsumi S.
        • Yamaguchi Y.
        • Okabe A.
        • Shimada M.
        • et al.
        PHLDA1, another PHLDA family protein that inhibits Akt.
        Cancer Sci. 2018; 109: 3532-3542
        • Dotto G.P.
        • Rustgi A.K.
        Squamous cell cancers: a unified perspective on biology and genetics.
        Cancer Cell. 2016; 29: 622-637
        • Ezawa I.
        • Sawai Y.
        • Kawase T.
        • Okabe A.
        • Tsutsumi S.
        • Ichikawa H.
        • et al.
        Novel p53 target gene FUCA1 encodes a fucosidase and regulates growth and survival of cancer cells.
        Cancer Sci. 2016; 107: 734-745
        • Frank D.
        • Fortino W.
        • Clark L.
        • Musalo R.
        • Wang W.
        • Saxena A.
        • et al.
        Placental overgrowth in mice lacking the imprinted gene Ipl.
        Proc Natl Acad Sci USA. 2002; 99: 7490-7495
        • Ihaka R.
        • Gentleman R. R
        a language for data analysisand graphics.
        J Comp Graph Stat. 1996; 5: 299-314
        • Kadaja M.
        • Keyes B.E.
        • Lin M.
        • Pasolli H.A.
        • Genander M.
        • Polak L.
        • et al.
        SOX9: a stem cell transcriptional regulator of secreted niche signaling factors.
        Genes Dev. 2014; 28: 328-341
        • Kawase T.
        • Ichikawa H.
        • Ohta T.
        • Nozaki N.
        • Tashiro F.
        • Ohki R.
        • et al.
        p53 target gene AEN is a nuclear exonuclease required for p53-dependent apoptosis.
        Oncogene. 2008; 27: 3797-3810
        • Kawase T.
        • Ohki R.
        • Shibata T.
        • Tsutsumi S.
        • Kamimura N.
        • Inazawa J.
        • et al.
        PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt.
        Cell. 2009; 136: 535-550
        • Kemp C.J.
        • Donehower L.A.
        • Bradley A.
        • Balmain A.
        Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors.
        Cell. 1993; 74: 813-822
        • Kojima M.
        • Chen Y.
        • Ikeda K.
        • Tsukada Y.
        • Takahashi D.
        • Kawano S.
        • et al.
        Recommendation of long-term and systemic management according to the risk factors in rectal NETs patients.
        Sci Rep. 2019; 9: 2404
        • Lane D.
        • Levine A.
        p53 Research: the past thirty years and the next thirty years.
        Cold Spring Harb Perspect Biol. 2010; 2: a000893
        • Lapouge G.
        • Youssef K.K.
        • Vokaer B.
        • Achouri Y.
        • Michaux C.
        • Sotiropoulou P.A.
        • et al.
        Identifying the cellular origin of squamous skin tumors.
        Proc Natl Acad Sci USA. 2011; 108: 7431-7436
        • Latil M.
        • Nassar D.
        • Beck B.
        • Boumahdi S.
        • Wang L.
        • Brisebarre A.
        • et al.
        Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition.
        Cell Stem Cell. 2017; 20: 191-204.e5
        • Levine A.J.
        p53: 800 million years of evolution and 40 years of discovery.
        Nat Rev Cancer. 2020; 20: 471-480
        • Luch A.
        Nature and nurture - lessons from chemical carcinogenesis.
        Nat Rev Cancer. 2005; 5: 113-125
        • Masuya H.
        • Shimizu K.
        • Sezutsu H.
        • Sakuraba Y.
        • Nagano J.
        • Shimizu A.
        • et al.
        Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI).
        Hum Mol Genet. 2005; 14: 575-583
        • Mello S.S.
        • Attardi L.D.
        Deciphering p53 signaling in tumor suppression.
        Curr Opin Cell Biol. 2018; 51: 65-72
        • Moral M.
        • Segrelles C.
        • Lara M.F.
        • Martínez-Cruz A.B.
        • Lorz C.
        • Santos M.
        • et al.
        Akt activation synergizes with Trp53 loss in oral epithelium to produce a novel mouse model for head and neck squamous cell carcinoma.
        Cancer Res. 2009; 69: 1099-1108
        • Nassar D.
        • Latil M.
        • Boeckx B.
        • Lambrechts D.
        • Blanpain C.
        Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma [published correction appears in Nat Med 2016;22:217.
        Nat Med. 2015; 21: 946-954
        • Oda E.
        • Ohki R.
        • Murasawa H.
        • Nemoto J.
        • Shibue T.
        • Yamashita T.
        • et al.
        Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis.
        Science. 2000; 288: 1053-1058
        • Ohki R.
        • Kawase T.
        • Ohta T.
        • Ichikawa H.
        • Taya Y.
        Dissecting functional roles of p53 N-terminal transactivation domains by microarray expression analysis [published correction appears in Cancer Sci 2007;98:464].
        Cancer Sci. 2007; 98: 189-200
        • Ohki R.
        • Nemoto J.
        • Murasawa H.
        • Oda E.
        • Inazawa J.
        • Tanaka N.
        • et al.
        Reprimo, a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase.
        J Biol Chem. 2000; 275: 22627-22630
        • Ohki R.
        • Saito K.
        • Chen Y.
        • Kawase T.
        • Hiraoka N.
        • Saigawa R.
        • et al.
        PHLDA3 is a novel tumor suppressor of pancreatic neuroendocrine tumors.
        Proc Natl Acad Sci USA. 2014; 111: E2404-E2413
        • Pfister N.T.
        • Prives C.
        Transcriptional regulation by wild-type and cancer-related mutant forms of p53.
        Cold Spring Harb Perspect Med. 2017; 7: a026054
        • Pickering C.R.
        • Zhou J.H.
        • Lee J.J.
        • Drummond J.A.
        • Peng S.A.
        • Saade R.E.
        • et al.
        Mutational landscape of aggressive cutaneous squamous cell carcinoma.
        Clin Cancer Res. 2014; 20: 6582-6592
        • Ruggeri B.
        • Caamano J.
        • Goodrow T.
        • DiRado M.
        • Bianchi A.
        • Trono D.
        • et al.
        Alterations of the p53 tumor suppressor gene during mouse skin tumor progression.
        Cancer Res. 1991; 51: 6615-6621
        • Sakata N.
        • Yamaguchi Y.
        • Chen Y.
        • Shimoda M.
        • Yoshimatsu G.
        • Unno M.
        • et al.
        Pleckstrin homology-like domain family A, member 3 (PHLDA3) deficiency improves islets engraftment through the suppression of hypoxic damage.
        PLoS One. 2017; 12e0187927
        • Sánchez-Danés A.
        • Blanpain C.
        Deciphering the cells of origin of squamous cell carcinomas.
        Nat Rev Cancer. 2018; 18: 549-561
        • Segrelles C.
        • Lu J.
        • Hammann B.
        • Santos M.
        • Moral M.
        • Cascallana J.L.
        • et al.
        Deregulated activity of Akt in epithelial basal cells induces spontaneous tumors and heightened sensitivity to skin carcinogenesis.
        Cancer Res. 2007; 67: 10879-10888
        • Suzuki S.
        • Tsutsumi S.
        • Chen Y.
        • Ozeki C.
        • Okabe A.
        • Kawase T.
        • et al.
        Identification and characterization of the binding sequences and target genes of p53 lacking the 1st transactivation domain.
        Cancer Sci. 2020; 111: 451-466
        • Tanikawa C.
        • Zhang Y.Z.
        • Yamamoto R.
        • Tsuda Y.
        • Tanaka M.
        • Funauchi Y.
        • et al.
        The transcriptional landscape of p53 signalling pathway.
        EBioMedicine. 2017; 20: 109-119
        • White A.C.
        • Tran K.
        • Khuu J.
        • Dang C.
        • Cui Y.
        • Binder S.W.
        • et al.
        Defining the origins of Ras/p53-mediated squamous cell carcinoma.
        Proc Natl Acad Sci USA. 2011; 108: 7425-7430

      Supplementary References

        • Aoto Y.
        • Okumura K.
        • Hachiya T.
        • Hase S.
        • Wakabayashi Y.
        • Ishikawa F.
        • et al.
        Time-series analysis of tumorigenesis in a murine skin carcinogenesis model.
        Sci Rep. 2018; 8: 12994
        • Chen Y.
        • Ohki R.
        p53-PHLDA3-Akt network: the key regulators of neuroendocrine tumorigenesis.
        Int J Mol Sci. 2020; 21: 4098
        • Kojima M.
        • Chen Y.
        • Ikeda K.
        • Tsukada Y.
        • Takahashi D.
        • Kawano S.
        • et al.
        Recommendation of long-term and systemic management according to the risk factors in rectal NETs patients.
        Sci Rep. 2019; 9: 2404
        • Latil M.
        • Nassar D.
        • Beck B.
        • Boumahdi S.
        • Wang L.
        • Brisebarre A.
        • et al.
        Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition.
        Cell Stem Cell. 2017; 20: 191-204.e5
        • Ohki R.
        • Saito K.
        • Chen Y.
        • Kawase T.
        • Hiraoka N.
        • Saigawa R.
        • et al.
        PHLDA3 is a novel tumor suppressor of pancreatic neuroendocrine tumors.
        Proc Natl Acad Sci USA. 2014; 111: E2404-E2413
        • Okumura K.
        • Saito M.
        • Isogai E.
        • Aoto Y.
        • Hachiya T.
        • Sakakibara Y.
        • et al.
        Meis1 regulates epidermal stem cells and is required for skin tumorigenesis.
        PLoS One. 2014; 9e102111
        • Suzuki S.
        • Tsutsumi S.
        • Chen Y.
        • Ozeki C.
        • Okabe A.
        • Kawase T.
        • et al.
        Identification and characterization of the binding sequences and target genes of p53 lacking the 1st transactivation domain.
        Cancer Sci. 2020; 111: 451-466