Advertisement
Journal of Investigative Dermatology Home

Vitiligo Skin T Cells Are Prone to Produce Type 1 and Type 2 Cytokines to Induce Melanocyte Dysfunction and Epidermal Inflammatory Response Through Jak Signaling

Published:October 13, 2021DOI:https://doi.org/10.1016/j.jid.2021.09.015
      Vitiligo is a T cell–mediated inflammatory skin disorder characterized by the loss of epidermal melanocytes. However, the contribution of melanocytes to the physiopathology of the disease in response to the T-cell microenvironment remains unclear. Here, using NanoString technology and multiplex ELISA, we show that active vitiligo perilesional skin is characterized by prominent type 1 and 2 associated immune responses. The vitiligo skin T-cell secretome downregulated melanocyte function and adhesion while increasing melanocyte mitochondrial metabolism and expression of inflammatory cytokines and chemokines by epidermal cells. The Jak1/2 inhibitor ruxolitinib strongly inhibited such effects on epidermal cells. Our data highlight that vitiligo is more complex than previously thought, with prominent combined activities of both T helper type 1– and T helper type 2–related cytokines inducing inflammatory responses of epidermal cells. Melanocytes do not appear only to be a target of T cells in vitiligo but could actively contribute to perpetuate inflammation. Jak inhibitors could prevent the impact of T cells on epidermal cells and pigmentation, highlighting their potential clinical benefit in vitiligo.

      Graphical abstract

      Abbreviations:

      AD (atopic dermatitis), KC (keratinocyte), OCR (oxygen consumption rate), STAT (signal transducer and activator of transcription), Th (T helper type)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      PDF Download and 24 Hours Online Access
      Society Members (SID/ESDR), remember to log in for access.

      Subscribe:

      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Al-Shobaili H.
        • Settin A.
        • Alzolibani A.
        • Al Robaee A.
        • Salem T.
        • Al-Saif F.
        • et al.
        Interleukin-4 (–590 C>T) and interleukin-4 receptor (Q551R A>G) gene polymorphisms in Saudi patients with vitiligo.
        Eur J Dermatol. 2013; 23: 402-404
        • Bertolotti A.
        • Boniface K.
        • Vergier B.
        • Mossalayi D.
        • Taieb A.
        • Ezzedine K.
        • et al.
        Type I interferon signature in the initiation of the immune response in vitiligo.
        Pigment Cell Melanoma Res. 2014; 27: 398-407
        • Birlea S.A.
        • Jin Y.
        • Bennett D.C.
        • Herbstman D.M.
        • Wallace M.R.
        • McCormack W.T.
        • et al.
        Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP.
        J Invest Dermatol. 2011; 131: 371-381
        • Boniface K.
        • Jacquemin C.
        • Darrigade A.S.
        • Dessarthe B.
        • Martins C.
        • Boukhedouni N.
        • et al.
        Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3.
        J Invest Dermatol. 2018; 138: 355-364
        • Boniface K.
        • Seneschal J.
        • Picardo M.
        • Taïeb A.
        Vitiligo: focus on clinical aspects, immunopathogenesis, and therapy.
        Clin Rev Allergy Immunol. 2018; 54: 52-67
        • Boukhedouni N.
        • Martins C.
        • Darrigade A.S.
        • Drullion C.
        • Rambert J.
        • Barrault C.
        • et al.
        Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo.
        JCI Insight. 2020; 5e133772
        • Cheong K.A.
        • Chae S.C.
        • Kim Y.S.
        • Kwon H.B.
        • Chung H.T.
        • Lee A.Y.
        Association of thymic stromal lymphopoietin gene –847C>T polymorphism in generalized vitiligo.
        Exp Dermatol. 2009; 18: 1073-1075
        • Cheuk S.
        • Schlums H.
        • Gallais Sérézal I.
        • Martini E.
        • Chiang S.C.
        • Marquardt N.
        • et al.
        CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin.
        Immunity. 2017; 46: 287-300
        • Choi H.
        • Choi H.
        • Han J.
        • Jin S.H.
        • Park J.Y.
        • Shin D.W.
        • et al.
        IL-4 inhibits the melanogenesis of normal human melanocytes through the JAK2-STAT6 signaling pathway.
        J Invest Dermatol. 2013; 133: 528-536
        • Clark R.A.
        • Chong B.F.
        • Mirchandani N.
        • Yamanaka K.I.
        • Murphy G.F.
        • Dowgiert R.K.
        • et al.
        A novel method for the isolation of skin resident T cells from normal and diseased human skin.
        J Invest Dermatol. 2006; 126: 1059-1070
        • Craiglow B.G.
        • King B.A.
        Tofacitinib citrate for the treatment of vitiligo: a pathogenesis-directed therapy.
        JAMA Dermatol. 2015; 151: 1110-1112
        • Czarnowicki T.
        • He H.
        • Leonard A.
        • Kim H.J.
        • Kameyama N.
        • Pavel A.B.
        • et al.
        Blood endotyping distinguishes the profile of vitiligo from that of other inflammatory and autoimmune skin diseases.
        J Allergy Clin Immunol. 2019; 143: 2095-2107
        • Dell’Anna M.L.
        • Picardo M.
        A review and a new hypothesis for non-immunological pathogenetic mechanisms in vitiligo.
        Pigment Cell Res. 2006; 19: 406-411
        • Delmas V.
        • Larue L.
        Molecular and cellular basis of depigmentation in vitiligo patients.
        Exp Dermatol. 2019; 28: 662-666
        • Denat L.
        • Kadekaro A.L.
        • Marrot L.
        • Leachman S.A.
        • Abdel-Malek Z.A.
        Melanocytes as instigators and victims of oxidative stress.
        J Invest Dermatol. 2014; 134: 1512-1518
        • Elbuluk N.
        • Ezzedine K.
        Quality of life, burden of disease, co-morbidities, and systemic effects in vitiligo patients.
        Dermatol Clin. 2017; 35: 117-128
        • Ezzedine K.
        • Diallo A.
        • Léauté-Labrèze C.
        • Seneschal J.
        • Boniface K.
        • Cario-André M.
        • et al.
        Pre- vs. post-pubertal onset of vitiligo: multivariate analysis indicates atopic diathesis association in pre-pubertal onset vitiligo.
        Br J Dermatol. 2012; 167: 490-495
        • Ezzedine K.
        • Eleftheriadou V.
        • Whitton M.
        • van Geel N.
        Vitiligo.
        Lancet. 2015; 386: 74-84
        • Frisoli M.L.
        • Essien K.
        • Harris J.E.
        Vitiligo: mechanisms of pathogenesis and treatment.
        Annu Rev Immunol. 2020; 38: 621-648
        • Frisoli M.L.
        • Harris J.E.
        Vitiligo: mechanistic insights lead to novel treatments.
        J Allergy Clin Immunol. 2017; 140: 654-662
        • Gallais Sérézal I.
        • Classon C.
        • Cheuk S.
        • Barrientos-Somarribas M.
        • Wadman E.
        • Martini E.
        • et al.
        Resident T cells in resolved psoriasis steer tissue responses that stratify clinical outcome.
        J Invest Dermatol. 2018; 138: 1754-1763
        • Guttman-Yassky E.
        • Nograles K.E.
        • Krueger J.G.
        Contrasting pathogenesis of atopic dermatitis and psoriasis--part II: immune cell subsets and therapeutic concepts.
        J Allergy Clin Immunol. 2011; 127: 1420-1432
        • Han J.
        • Lee E.
        • Kim E.
        • Yeom M.H.
        • Kwon O.
        • Yoon T.H.
        • et al.
        Role of epidermal γδ T-cell-derived interleukin 13 in the skin-whitening effect of ginsenoside F1.
        Exp Dermatol. 2014; 23: 860-862
        • Harris J.E.
        • Rashighi M.
        • Nguyen N.
        • Jabbari A.
        • Ulerio G.
        • Clynes R.
        • et al.
        Rapid skin repigmentation on oral Ruxolitinib in a patient with coexistent vitiligo and alopecia areata (AA).
        J Am Acad Dermatol. 2016; 74: 370-371
        • Imran M.
        • Laddha N.C.
        • Dwivedi M.
        • Mansuri M.S.
        • Singh J.
        • Rani R.
        • et al.
        Interleukin-4 genetic variants correlate with its transcript and protein levels in patients with vitiligo.
        Br J Dermatol. 2012; 167: 314-323
        • Jacquemin C.
        • Martins C.
        • Lucchese F.
        • Thiolat D.
        • Taieb A.
        • Seneschal J.
        • et al.
        NKG2D defines a subset of skin effector memory CD8 T cells with proinflammatory functions in vitiligo.
        J Invest Dermatol. 2020; 140: 1143-1153.e5
        • Joshipura D.
        • Alomran A.
        • Zancanaro P.
        • Rosmarin D.
        Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib: a 32-week open-label extension study with optional narrow-band ultraviolet B.
        J Am Acad Dermatol. 2018; 78: 1205-1207.e1
        • Khan R.
        • Gupta S.
        • Sharma A.
        Circulatory levels of T-cell cytokines (interleukin [IL]-2, IL-4, IL-17, and transforming growth factor-β) in patients with vitiligo.
        J Am Acad Dermatol. 2012; 66: 510-511
        • Kohlmeier J.E.
        • Miller S.C.
        • Smith J.
        • Lu B.
        • Gerard C.
        • Cookenham T.
        • et al.
        The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections.
        Immunity. 2008; 29: 101-113
        • Kohlmeier J.E.
        • Reiley W.W.
        • Perona-Wright G.
        • Freeman M.L.
        • Yager E.J.
        • Connor L.M.
        • et al.
        Inflammatory chemokine receptors regulate CD8(+) T cell contraction and memory generation following infection.
        J Exp Med. 2011; 208: 1621-1634
        • Liu L.Y.
        • Strassner J.P.
        • Refat M.A.
        • Harris J.E.
        • King B.A.
        Repigmentation in vitiligo using the Janus kinase inhibitor tofacitinib may require concomitant light exposure.
        J Am Acad Dermatol. 2017; 77: 675-682.e1
        • Maouia A.
        • Sormani L.
        • Youssef M.
        • Helal A.N.
        • Kassab A.
        • Passeron T.
        Differential expression of CXCL9, CXCL10, and IFN-γ in vitiligo and alopecia areata patients.
        Pigment Cell Melanoma Res. 2017; 30: 259-261
        • Maresca V.
        • Roccella M.
        • Roccella F.
        • Camera E.
        • Del Porto G.
        • Passi S.
        • et al.
        Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo.
        J Invest Dermatol. 1997; 109: 310-313
        • Martins C.
        • Darrigade A.S.
        • Jacquemin C.
        • Barnetche T.
        • Taieb A.
        • Ezzedine K.
        • et al.
        Phenotype and function of circulating memory T cells in human vitiligo.
        Br J Dermatol. 2020; 183: 899-908
        • McCully M.L.
        • Ladell K.
        • Andrews R.
        • Jones R.E.
        • Miners K.L.
        • Roger L.
        • et al.
        CCR8 expression defines tissue-resident memory T cells in human skin.
        J Immunol. 2018; 200: 1639-1650
        • Migayron L.
        • Boniface K.
        • Seneschal J.
        Vitiligo, from physiopathology to emerging treatments: a review.
        Dermatol Ther (Heidelb). 2020; 10: 1185-1198
        • Mohan G.C.
        • Silverberg J.I.
        Association of vitiligo and alopecia areata with atopic dermatitis: a systematic review and meta-analysis.
        JAMA Dermatol. 2015; 151: 522-528
        • Natarajan V.T.
        • Ganju P.
        • Singh A.
        • Vijayan V.
        • Kirty K.
        • Yadav S.
        • et al.
        IFN-γ signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation.
        Proc Natl Acad Sci USA. 2014; 111: 2301-2306
        • Olsen E.A.
        • Kornacki D.
        • Sun K.
        • Hordinsky M.K.
        Ruxolitinib cream for the treatment of patients with alopecia areata: a 2-part, double-blind, randomized, vehicle-controlled phase 2 study.
        J Am Acad Dermatol. 2020; 82: 412-419
        • Picardo M.
        • Dell’Anna M.L.
        • Ezzedine K.
        • Hamzavi I.
        • Harris J.E.
        • Parsad D.
        • et al.
        Vitiligo.
        Nat Rev Dis Primers. 2015; 1: 15011
        • Rashighi M.
        • Agarwal P.
        • Richmond J.M.
        • Harris T.H.
        • Dresser K.
        • Su M.W.
        • et al.
        CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo.
        Sci Transl Med. 2014; 6: 223ra23
        • Rashighi M.
        • Harris J.E.
        Interfering with the IFN-γ/CXCL10 pathway to develop new targeted treatments for vitiligo.
        Ann Transl Med. 2015; 3: 343
        • Regazzetti C.
        • Joly F.
        • Marty C.
        • Rivier M.
        • Mehul B.
        • Reiniche P.
        • et al.
        Transcriptional analysis of vitiligo skin reveals the alteration of WNT pathway: a promising target for repigmenting vitiligo patients.
        J Invest Dermatol. 2015; 135: 3105-3114
        • Rezk A.F.
        • Kemp D.M.
        • El-Domyati M.
        • El-Din W.H.
        • Lee J.B.
        • Uitto J.
        • et al.
        Misbalanced CXCL12 and CCL5 chemotactic signals in vitiligo onset and progression.
        J Invest Dermatol. 2017; 137: 1126-1134
        • Richmond J.M.
        • Frisoli M.L.
        • Harris J.E.
        Innate immune mechanisms in vitiligo: danger from within.
        Curr Opin Immunol. 2013; 25: 676-682
        • Richmond J.M.
        • Strassner J.P.
        • Zapata Jr., L.
        • Garg M.
        • Riding R.L.
        • Refat M.A.
        • et al.
        Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo.
        Sci Transl Med. 2018; 10eaam7710
        • Riding R.L.
        • Harris J.E.
        The role of memory CD8+ T cells in vitiligo.
        J Immunol. 2019; 203: 11-19
        • Rosmarin D.
        • Pandya A.G.
        • Lebwohl M.
        • Grimes P.
        • Hamzavi I.
        • Gottlieb A.B.
        • et al.
        Ruxolitinib cream for treatment of vitiligo: a randomised, controlled, phase 2 trial.
        Lancet. 2020; 396: 110-120
        • Rothstein B.
        • Joshipura D.
        • Saraiya A.
        • Abdat R.
        • Ashkar H.
        • Turkowski Y.
        • et al.
        Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib.
        J Am Acad Dermatol. 2017; 76: 1054-1060.e1
        • Silverberg J.I.
        • Silverberg N.B.
        Association between vitiligo and atopic disorders: a pilot study.
        JAMA Dermatol. 2013; 149: 983-986
        • Singh R.K.
        • Lee K.M.
        • Vujkovic-Cvijin I.
        • Ucmak D.
        • Farahnik B.
        • Abrouk M.
        • et al.
        The role of IL-17 in vitiligo: a review.
        Autoimmun Rev. 2016; 15: 397-404
        • Tang A.
        • Eller M.S.
        • Hara M.
        • Yaar M.
        • Hirohashi S.
        • Gilchrest B.A.
        E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro.
        J Cell Sci. 1994; 107: 983-992
        • Vaccaro M.
        • Cicero F.
        • Mannucci C.
        • Calapai G.
        • Spatari G.
        • Barbuzza O.
        • et al.
        IL-33 circulating serum levels are increased in patients with non-segmental generalized vitiligo.
        Arch Dermatol Res. 2016; 308: 527-530
        • van den Boorn J.G.
        • Konijnenberg D.
        • Dellemijn T.A.
        • van der Veen J.P.
        • Bos J.D.
        • Melief C.J.
        • et al.
        Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients.
        J Invest Dermatol. 2009; 129: 2220-2232
        • Wang C.Q.F.
        • Akalu Y.T.
        • Suarez-Farinas M.
        • Gonzalez J.
        • Mitsui H.
        • Lowes M.A.
        • et al.
        IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: potential relevance to psoriasis.
        J Invest Dermatol. 2013; 133: 2741-2752
        • Wu J.
        • Zhou M.
        • Wan Y.
        • Xu A.
        CD8+ T cells from vitiligo perilesional margins induce autologous melanocyte apoptosis.
        Mol Med Rep. 2013; 7: 237-241
        • Yu R.
        • Broady R.
        • Huang Y.
        • Wang Y.
        • Yu J.
        • Gao M.
        • et al.
        Transcriptome analysis reveals markers of aberrantly activated innate immunity in vitiligo lesional and non-lesional skin.
        PLoS One. 2012; 7: e51040

      Supplementary References

        • Benjamini Y.
        • Drai D.
        • Elmer G.
        • Kafkafi N.
        • Golani I.
        Controlling the false discovery rate in behavior genetics research.
        Behav Brain Res. 2001; 125: 279-284
        • Benzekri L.
        • Gauthier Y.
        Clinical markers of vitiligo activity.
        J Am Acad Dermatol. 2017; 76: 856-862
        • Boukhedouni N.
        • Martins C.
        • Darrigade A.S.
        • Drullion C.
        • Rambert J.
        • Barrault C.
        • et al.
        Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo.
        JCI Insight. 2020; 5e133772
        • Chen E.Y.
        • Tan C.M.
        • Kou Y.
        • Duan Q.
        • Wang Z.
        • Meirelles G.V.
        • et al.
        Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool.
        BMC Bioinformatics. 2013; 14: 128
        • Gene Ontology Consortium
        The Gene Ontology resource: enriching a GOld mine.
        Nucleic Acids Res. 2021; 49: D325-D334
        • Kuleshov M.V.
        • Jones M.R.
        • Rouillard A.D.
        • Fernandez N.F.
        • Duan Q.
        • Wang Z.
        • et al.
        Enrichr: a comprehensive gene set enrichment analysis web server 2016 update.
        Nucleic Acids Res. 2016; 44: W90-W97
        • Sosa J.J.
        • Currimbhoy S.D.
        • Ukoha U.
        • Sirignano S.
        • O’Leary R.
        • Vandergriff T.
        • et al.
        Confetti-like depigmentation: a potential sign of rapidly progressing vitiligo.
        J Am Acad Dermatol. 2015; 73: 272-275
        • Taïeb A.
        • Picardo M.
        • VETF members
        The definition and assessment of vitiligo: a consensus report of the Vitiligo European Task Force.
        Pigment Cell Res. 2007; 20: 27-35