Advertisement
Journal of Investigative Dermatology Home

Pulsed Electric Fields Induce Extracellular Matrix Remodeling through Matrix Metalloproteinases Activation and Decreased Collagen Production

Published:October 21, 2021DOI:https://doi.org/10.1016/j.jid.2021.09.025
      Impairment of extracellular matrix remodeling is observed in the tumor microenvironment or fibrosis and results in excessive collagen production and/or decreased degradation by matrix metalloproteinases (MMPs). Thanks to their local application and transient effects, physical stimuli appear as attractive tools to remodel the extracellular matrix. We assessed the potential of pulsed electric field technology, classically applied to drug delivery, to induce collagen remodeling at the tissue scale. A sophisticated in vitro tissue-engineered human dermal substitute was used to show that microsecond and millisecond pulsed electric fields induced (i) a rapid modulation (4 hours after electrostimulation) of mRNA genes composing the matrisome, particularly a downregulation of procollagens and extracellular matrix maturation enzymes such as transglutaminase 2 and lysyl oxidase like; (ii) a transient decrease in procollagens production and hydroxyproline tissue content within a week after electrostimulation; (iii) a long-lasting ROS-dependent overactivation of matrix metalloproteinases for at least 48 hours; and (iv) a downregulation of TGFβ1. These observations underpin that pulsed electric fields, a technology already approved for clinical use combined with anticancer agents, are particularly promising to provide local and effective treatment of abnormal extracellular matrix.

      Graphical abstract

      Abbreviations:

      ECM (extracellular matrix), FTIR-ATR (Fourier transform infrared‒attenuated total reflectance), LOX (lysyl oxidase), LP (long pulse), MMP (matrix metalloproteinase), PEF (pulsed electric field), SP (short pulse), TG (tissue transglutaminase)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'
      Society Members (SID/ESDR), remember to log in for access.

      Subscribe:

      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Amălinei C.
        • Căruntu I.D.
        • Bălan R.A.
        Biology of metalloproteinases.
        Rom J Morphol Embryol. 2007; 48: 323-334
        • Athanasiou K.A.
        • Eswaramoorthy R.
        • Hadidi P.
        • Hu J.C.
        Self-organization and the self-assembling process in tissue engineering.
        Annu Rev Biomed Eng. 2013; 15: 115-136
        • Benn M.C.
        • Weber W.
        • Klotzsch E.
        • Vogel V.
        • Pot S.A.
        Tissue transglutaminase in fibrosis — more than an extracellular matrix cross-linker.
        Curr Opin Biomed Eng. 2019; 10: 156-164
        • Campana L.G.
        • Mocellin S.
        • Basso M.
        • Puccetti O.
        • De Salvo G.L.
        • Chiarion-Sileni V.
        • et al.
        Bleomycin-based electrochemotherapy: clinical outcome from a single institution’s experience with 52 patients.
        Ann Surg Oncol. 2009; 16: 191-199
        • Chen W.
        • Yang A.
        • Jia J.
        • Popov Y.V.
        • Schuppan D.
        • You H.
        Lysyl oxidase (LOX) family members: rationale and their potential as therapeutic targets for liver fibrosis.
        Hepatology. 2020; 72: 729-741
        • Collighan R.J.
        • Griffin M.
        Transglutaminase 2 cross-linking of matrix proteins: biological significance and medical applications.
        Amino Acids. 2009; 36: 659-670
        • Davalos R.V.
        • Mir I.L.
        • Rubinsky B.
        Tissue ablation with irreversible electroporation.
        Ann Biomed Eng. 2005; 33: 223-231
        • Dickinson B.C.
        • Chang C.J.
        Chemistry and biology of reactive oxygen species in signaling or stress responses.
        Nat Chem Biol. 2011; 7: 504-511
        • Eden E.
        • Navon R.
        • Steinfeld I.
        • Lipson D.
        • Yakhini Z.
        GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists.
        BMC Bioinformatics. 2009; 10: 48
        • Edgar R.
        • Domrachev M.
        • Lash A.E.
        Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.
        Nucleic Acids Res. 2002; 30: 207-210
        • Frantz C.
        • Stewart K.M.
        • Weaver V.M.
        The extracellular matrix at a glance.
        J Cell Sci. 2010; 123: 4195-4200
        • Garner A.L.
        • Torres A.S.
        • Klopman S.
        • Neculaes B.
        Electrical stimulation of whole blood for growth factor release and potential clinical implications.
        Med Hypotheses. 2020; 143: 110105
        • Geboers B.
        • Scheffer H.J.
        • Graybill P.M.
        • Ruarus A.H.
        • Nieuwenhuizen S.
        • Puijk R.S.
        • et al.
        High-voltage electrical pulses in oncology: irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy.
        Radiology. 2020; 295: 254-272
        • Gehl J.
        • Sersa G.
        • Matthiessen L.W.
        • Muir T.
        • Soden D.
        • Occhini A.
        • et al.
        Updated standard operating procedures for electrochemotherapy of cutaneous tumours and skin metastases.
        Acta Oncol. 2018; 57: 874-882
        • Gelse K.
        • Pöschl E.
        • Aigner T.
        Collagens—structure, function, and biosynthesis.
        Adv Drug Deliv Rev. 2003; 55: 1531-1546
        • Gibot L.
        • Galbraith T.
        • Bourland J.
        • Rogic A.
        • Skobe M.
        • Auger F.A.
        Tissue-engineered 3D human lymphatic microvascular network for in vitro studies of lymphangiogenesis.
        Nat Protoc. 2017; 12: 1077-1088
        • Gibot L.
        • Galbraith T.
        • Huot J.
        • Auger F.A.
        A preexisting microvascular network benefits in vivo revascularization of a microvascularized tissue-engineered skin substitute.
        Tissue Eng Part A. 2010; 16: 3199-3206
        • Glass L.F.
        • Jaroszeski M.
        • Gilbert R.
        • Reintgen D.S.
        • Heller R.
        Intralesional bleomycin-mediated electrochemotherapy in 20 patients with basal cell carcinoma.
        J Am Acad Dermatol. 1997; 37: 596-599
        • Golberg A.
        • Villiger M.
        • Felix Broelsch G.F.
        • Quinn K.P.
        • Albadawi H.
        • Khan S.
        • et al.
        Skin regeneration with all accessory organs following ablation with irreversible electroporation.
        J Tissue Eng Regen Med. 2018; 12: 98-113
        • Golberg A.
        • Villiger M.
        • Khan S.
        • Quinn K.P.
        • Lo W.C.Y.
        • Bouma B.E.
        • et al.
        Preventing scars after injury with partial irreversible electroporation.
        J Invest Dermatol. 2016; 136: 2297-2304
        • Gouarderes S.
        • Doumard L.
        • Vicendo P.
        • Mingotaud A.F.
        • Rols M.P.
        • Gibot L.
        Electroporation does not affect human dermal fibroblast proliferation and migration properties directly but indirectly via the secretome.
        Bioelectrochemistry. 2020; 134: 107531
        • Gouarderes S.
        • Mingotaud A.F.
        • Vicendo P.
        • Gibot L.
        Vascular and extracellular matrix remodeling by physical approaches to improve drug delivery at the tumor site.
        Expert Opin Drug Deliv. 2020; 17: 1703-1726
        • Grenard P.
        • Bresson-Hadni S.
        • El Alaoui S.
        • Chevallier M.
        • Vuitton D.A.
        • Ricard-Blum S.
        Transglutaminase-mediated cross-linking is involved in the stabilization of extracellular matrix in human liver fibrosis.
        J Hepatol. 2001; 35: 367-375
        • Griffin M.
        • Casadio R.
        • Bergamini C.M.
        Transglutaminases: nature’s biological glues.
        Biochem J. 2002; 368: 377-396
        • Hynes R.O.
        • Naba A.
        Overview of the matrisome—an inventory of extracellular matrix constituents and functions.
        Cold Spring Harb Perspect Biol. 2012; 4: a004903
        • Ivey J.W.
        • Bonakdar M.
        • Kanitkar A.
        • Davalos R.V.
        • Verbridge S.S.
        Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment.
        Cancer Lett. 2016; 380: 330-339
        • Kähäri V.M.
        • Saarialho-Kere U.
        Matrix metalloproteinases in skin.
        Exp Dermatol. 1997; 6: 199-213
        • Kis E.
        • Baltás E.
        • Kinyó A.
        • Varga E.
        • Nagy N.
        • Gyulai R.
        • et al.
        Successful treatment of multiple basaliomas with bleomycin-based electrochemotherapy: a case series of three patients with Gorlin-Goltz syndrome.
        Acta Derm Venereol. 2012; 92: 648-651
        • Kotnik T.
        • Rems L.
        • Tarek M.
        • Miklavčič D.
        Membrane electroporation and electropermeabilization: mechanisms and models.
        Annu Rev Biophys. 2019; 48: 63-91
        • Madi M.
        • Rols M.P.
        • Gibot L.
        Efficient in vitro electropermeabilization of reconstructed human dermal tissue.
        J Membr Biol. 2015; 248: 903-908
        • Madi M.
        • Rols M.P.
        • Gibot L.
        Gene electrotransfer in 3D reconstructed human dermal tissue.
        Curr Gene Ther. 2016; 16: 75-82
        • Magnan L.
        • Labrunie G.
        • Marais S.
        • Rey S.
        • Dusserre N.
        • Bonneu M.
        • et al.
        Characterization of a cell-assembled extracellular matrix and the effect of the devitalization process.
        Acta Biomater. 2018; 82: 56-67
        • Marty M.
        • Sersa G.
        • Garbay J.R.
        • Gehl J.
        • Collins C.G.
        • Snoj M.
        • et al.
        Electrochemotherapy – an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study.
        Eur J Cancer Suppl. 2006; 4: 3-13
        • Meng X.M.
        • Nikolic-Paterson D.J.
        • Lan H.Y.
        TGF-β: the master regulator of fibrosis.
        Nat Rev Nephrol. 2016; 12: 325-338
        • Naba A.
        • Clauser K.R.
        • Ding H.
        • Whittaker C.A.
        • Carr S.A.
        • Hynes R.O.
        The extracellular matrix: tools and insights for the “omics” era.
        Matrix Biol. 2016; 49: 10-24
        • Nuccitelli R.
        Application of pulsed electric fields to cancer therapy.
        Bioelectricity. 2019; 1: 30-34
        • Ricard-Blum S.
        The collagen family.
        Cold Spring Harb Perspect Biol. 2011; 3: a004978
        • Ricard-Blum S.
        • Baffet G.
        • Théret N.
        Molecular and tissue alterations of collagens in fibrosis.
        Matrix Biol. 2018; 68–69: 122-149
        • Sanden K.W.
        • Kohler A.
        • Afseth N.K.
        • Böcker U.
        • Rønning S.B.
        • Liland K.H.
        • et al.
        The use of Fourier-transform infrared spectroscopy to characterize connective tissue components in skeletal muscle of Atlantic cod (Gadus morhua L.).
        J Biophotonics. 2019; 12e201800436
        • Staniszewska E.
        • Malek K.
        • Baranska M.
        Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy.
        Spectrochim Acta A Mol Biomol Spectrosc. 2014; 118: 981-986
        • Szondy Z.
        • Korponay-Szabó I.
        • Király R.
        • Sarang Z.
        • Tsay G.J.
        Transglutaminase 2 in human diseases.
        Biomedicine (Taipei). 2017; 7: 15
        • Trackman P.C.
        Lysyl oxidase isoforms and potential therapeutic opportunities for fibrosis and cancer.
        Expert Opin Ther Targets. 2016; 20: 935-945
        • Wang Q.
        • Sanad W.
        • Miller L.M.
        • Voigt A.
        • Klingel K.
        • Kandolf R.
        • et al.
        Infrared imaging of compositional changes in inflammatory cardiomyopathy.
        Vib Spectrosc. 2005; 38: 217-222
        • Winkler J.
        • Abisoye-Ogunniyan A.
        • Metcalf K.J.
        • Werb Z.
        Concepts of extracellular matrix remodelling in tumour progression and metastasis.
        Nat Commun. 2020; 11: 5120
        • Wynn T.A.
        Fibrotic disease and the T(H)1/T(H)2 paradigm.
        Nat Rev Immunol. 2004; 4: 583-594
        • Yamauchi M.
        • Sricholpech M.
        Lysine post-translational modifications of collagen.
        Essays Biochem. 2012; 52: 113-133
        • Yarmush M.L.
        • Golberg A.
        • Serša G.
        • Kotnik T.
        • Miklavčič D.
        Electroporation-based technologies for medicine: principles, applications, and challenges.
        Annu Rev Biomed Eng. 2014; 16: 295-320
        • Zhitkovich A.
        N-acetylcysteine: antioxidant, aldehyde scavenger, and more.
        Chem Res Toxicol. 2019; 32: 1318-1319

      Supplementary References

        • Badea E.
        • Della Gatta G.
        • Budrugeac P.
        Characterisation and evaluation of the environmental impact on historical parchments by differential scanning calorimetry.
        J Therm Anal Calorim. 2011; 104: 495-506
        • Belbachir K.
        • Noreen R.
        • Gouspillou G.
        • Petibois C.
        Collagen types analysis and differentiation by FTIR spectroscopy.
        Anal Bioanal Chem. 2009; 395: 829-837
        • Eden E.
        • Navon R.
        • Steinfeld I.
        • Lipson D.
        • Yakhini Z.
        GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists.
        BMC Bioinformatics. 2009; 10: 48
        • Naba A.
        • Clauser K.R.
        • Ding H.
        • Whittaker C.A.
        • Carr S.A.
        • Hynes R.O.
        The extracellular matrix: tools and insights for the “omics” era.
        Matrix Biol. 2016; 49: 10-24
        • Samouillan V.
        • Delaunay F.
        • Dandurand J.
        • Merbahi N.
        • Gardou J.P.
        • Yousfi M.
        • et al.
        The use of thermal techniques for the characterization and selection of natural biomaterials.
        J Funct Biomater. 2011; 2: 230-248
        • Sanden K.W.
        • Kohler A.
        • Afseth N.K.
        • Böcker U.
        • Rønning S.B.
        • Liland K.H.
        • et al.
        The use of Fourier-transform infrared spectroscopy to characterize connective tissue components in skeletal muscle of Atlantic cod (Gadus morhua L.).
        J Biophotonics. 2019; 12e201800436https://doi.org/10.1002/jbio.201800436
        • Tang R.
        • Samouillan V.
        • Dandurand J.
        • Lacabanne C.
        • Lacoste-Ferre M.H.
        • Bogdanowicz P.
        • et al.
        Identification of ageing biomarkers in human dermis biopsies by thermal analysis (DSC) combined with Fourier transform infrared spectroscopy (FTIR/ATR).
        Skin Res Technol. 2017; 23: 573-580
        • Wood B.R.
        The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues [published correction appears in Chem Soc Rev. 2016 Apr 7;45(7):1999].
        Chem Soc Rev. 2016; 45: 1980-1998