Advertisement
Journal of Investigative Dermatology Home

Regulation of 5-hydroxymethylcytosine by TET2 contributes to Squamous Cell Carcinoma tumorigenesis

Published:October 22, 2021DOI:https://doi.org/10.1016/j.jid.2021.09.026

      ABSTRACT

      DNA methylation is a key regulatory event controlling a variety of physiological processes and can have dramatic effects on gene transcription. Methylated Cytosine (5mC) can be oxidized by the TET family of enzymes to 5-hydroxymethylcytosine (5-hmC), a key intermediate in the de-methylation cycle, and 5-hmC levels are reduced in malignancies such as AML and melanoma. We constructed a tissue microarray of human cutaneous Squamous Cell Carcinoma (SCC) tumors and found a global reduction in 5-hmC levels compared to adjacent skin. Using a murine K14-CreER system, we have found that loss of Tet2 promotes carcinogen-induced SCC and cooperates with loss of Tp53 to drive spontaneous SCC tumors in epithelial tissues. Analysis of changes in 5-hmC and gene expression following loss of Tet2 in the epidermis revealed focal alterations in 5-hmC levels and an increase in Hair Follicle Transient Amplifying Cell (HF-TAC) genes along with a reduction in epidermal differentiation genes. These results demonstrate a role for Tet2 in epidermal lineage specification, consistent with reported roles for Tet enzymes in controlling lineage commitment in hematopoietic stem cells and ES cells and establish Tet2 as a bone fide tumor suppressor in SCC.

      Graphical abstract

      Abbreviations:

      SCC (Squamous Cell Carcinoma), 5mC (5-methylcytosine), 5-hmC (5-hydroxymethylcytosine), 5-fC (5-formylcytosine), 5-caC (5-carboxycytosine), TET (ten-eleven translocation), 4-NQO (4-Nitroquinoline-N-oxide)
      To read this article in full you will need to make a payment
      Purchase one-time access
      Society Members (SID/ESDR), remember to log in for access.
      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Ashburner M.
        • Ball C.A.
        • Blake J.A.
        • Botstein D.
        • Butler H.
        • Cherry J.M.
        • et al.
        Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.
        Nat Genet. 2000; 25: 25-29
        • Bonvin E.
        • Radaelli E.
        • Bizet M.
        • Luciani F.
        • Calonne E.
        • Putmans P.
        • et al.
        TET2-Dependent Hydroxymethylome Plasticity Reduces Melanoma Initiation and Progression.
        Cancer Res. 2019; 79: 482-494
        • Cancer Genome Atlas N.
        Comprehensive genomic characterization of head and neck squamous cell carcinomas.
        Nature. 2015; 517: 576-582
        • Cancer Genome Atlas Research N.
        Comprehensive genomic characterization of squamous cell lung cancers.
        Nature. 2012; 489: 519-525
        • Cerami E.
        • Gao J.
        • Dogrusoz U.
        • Gross B.E.
        • Sumer S.O.
        • Aksoy B.A.
        • et al.
        The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.
        Cancer Discov. 2012; 2: 401-404
        • Consortium E.P.
        • Moore J.E.
        • Purcaro M.J.
        • Pratt H.E.
        • Epstein C.B.
        • Shoresh N.
        • et al.
        Expanded encyclopaedias of DNA elements in the human and mouse genomes.
        Nature. 2020; 583: 699-710
        • Cuevas-Nunez M.C.
        • Gomes C.B.F.
        • Woo S.B.
        • Ramsey M.R.
        • Chen X.L.
        • Xu S.
        • et al.
        Biological significance of 5-hydroxymethylcytosine in oral epithelial dysplasia and oral squamous cell carcinoma.
        Oral Surg Oral Med Oral Pathol Oral Radiol. 2018; 125 (e2): 59-73
        • Dauber K.L.
        • Perdigoto C.N.
        • Valdes V.J.
        • Santoriello F.J.
        • Cohen I.
        • Ezhkova E.
        Dissecting the Roles of Polycomb Repressive Complex 2 Subunits in the Control of Skin Development.
        J Invest Dermatol. 2016; 136: 1647-1655
        • Dawlaty M.M.
        • Breiling A.
        • Le T.
        • Barrasa M.I.
        • Raddatz G.
        • Gao Q.
        • et al.
        Loss of Tet enzymes compromises proper differentiation of embryonic stem cells.
        Dev Cell. 2014; 29: 102-111
        • Delhommeau F.
        • Dupont S.
        • Della Valle V.
        • James C.
        • Trannoy S.
        • Masse A.
        • et al.
        Mutation in TET2 in myeloid cancers.
        N Engl J Med. 2009; 360: 2289-2301
        • Dixon J.R.
        • Selvaraj S.
        • Yue F.
        • Kim A.
        • Li Y.
        • Shen Y.
        • et al.
        Topological domains in mammalian genomes identified by analysis of chromatin interactions.
        Nature. 2012; 485: 376-380
        • Dotto G.P.
        • Rustgi A.K.
        Squamous Cell Cancers: A Unified Perspective on Biology and Genetics.
        Cancer Cell. 2016; 29: 622-637
        • Ficz G.
        • Branco M.R.
        • Seisenberger S.
        • Santos F.
        • Krueger F.
        • Hore T.A.
        • et al.
        Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.
        Nature. 2011; 473: 398-402
        • Haffner M.C.
        • Chaux A.
        • Meeker A.K.
        • Esopi D.M.
        • Gerber J.
        • Pellakuru L.G.
        • et al.
        Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers.
        Oncotarget. 2011; 2: 627-637
        • Han M.R.
        • Shin S.
        • Park H.C.
        • Kim M.S.
        • Lee S.H.
        • Jung S.H.
        • et al.
        Mutational signatures and chromosome alteration profiles of squamous cell carcinomas of the vulva.
        Exp Mol Med. 2018; 50: e442
        • He Y.F.
        • Li B.Z.
        • Li Z.
        • Liu P.
        • Wang Y.
        • Tang Q.
        • et al.
        Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
        Science. 2011; 333: 1303-1307
        • Hoadley K.A.
        • Yau C.
        • Hinoue T.
        • Wolf D.M.
        • Lazar A.J.
        • Drill E.
        • et al.
        Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer.
        Cell. 2018; 173: 291-304 e6
        • Huang R.
        • Wang Y.
        • Ge H.
        • Wang D.
        • Wang Y.
        • Zhang W.
        • et al.
        Restoration of TET2 deficiency inhibits tumor growth in head neck squamous cell carcinoma.
        Ann Transl Med. 2020; 8: 329
        • Inman G.J.
        • Wang J.
        • Nagano A.
        • Alexandrov L.B.
        • Purdie K.J.
        • Taylor R.G.
        • et al.
        The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature.
        Nat Commun. 2018; 9: 3667
        • Ito S.
        • D'Alessio A.C.
        • Taranova O.V.
        • Hong K.
        • Sowers L.C.
        • Zhang Y.
        Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification.
        Nature. 2010; 466: 1129-1133
        • Ito S.
        • Shen L.
        • Dai Q.
        • Wu S.C.
        • Collins L.B.
        • Swenberg J.A.
        • et al.
        Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.
        Science. 2011; 333: 1300-1303
        • Jambusaria-Pahlajani A.
        • Kanetsky P.A.
        • Karia P.S.
        • Hwang W.T.
        • Gelfand J.M.
        • Whalen F.M.
        • et al.
        Evaluation of AJCC tumor staging for cutaneous squamous cell carcinoma and a proposed alternative tumor staging system.
        JAMA Dermatol. 2013; 149: 402-410
        • Jankowska A.M.
        • Szpurka H.
        • Tiu R.V.
        • Makishima H.
        • Afable M.
        • Huh J.
        • et al.
        Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms.
        Blood. 2009; 113: 6403-6410
        • Jawert F.
        • Hasseus B.
        • Kjeller G.
        • Magnusson B.
        • Sand L.
        • Larsson L.
        Loss of 5-hydroxymethylcytosine and TET2 in oral squamous cell carcinoma.
        Anticancer Res. 2013; 33: 4325-4328
        • Jeschke J.
        • Collignon E.
        • Fuks F.
        Portraits of TET-mediated DNA hydroxymethylation in cancer.
        Curr Opin Genet Dev. 2016; 36: 16-26
        • Kanojia D.
        • Vaidya M.M.
        4-nitroquinoline-1-oxide induced experimental oral carcinogenesis.
        Oral Oncol. 2006; 42: 655-667
        • Karia P.S.
        • Han J.
        • Schmults C.D.
        Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012.
        J Am Acad Dermatol. 2013; 68: 957-966
        • Karia P.S.
        • Jambusaria-Pahlajani A.
        • Harrington D.P.
        • Murphy G.F.
        • Qureshi A.A.
        • Schmults C.D.
        Evaluation of American Joint Committee on Cancer, International Union Against Cancer, and Brigham and Women's Hospital tumor staging for cutaneous squamous cell carcinoma.
        J Clin Oncol. 2014; 32: 327-334
        • Ko M.
        • Huang Y.
        • Jankowska A.M.
        • Pape U.J.
        • Tahiliani M.
        • Bandukwala H.S.
        • et al.
        Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2.
        Nature. 2010; 468: 839-843
        • Kohli R.M.
        • Zhang Y.
        TET enzymes, TDG and the dynamics of DNA demethylation.
        Nature. 2013; 502: 472-479
        • Konstandin N.
        • Bultmann S.
        • Szwagierczak A.
        • Dufour A.
        • Ksienzyk B.
        • Schneider F.
        • et al.
        Genomic 5-hydroxymethylcytosine levels correlate with TET2 mutations and a distinct global gene expression pattern in secondary acute myeloid leukemia.
        Leukemia. 2011; 25: 1649-1652
        • Kunimoto H.
        • Meydan C.
        • Nazir A.
        • Whitfield J.
        • Shank K.
        • Rapaport F.
        • et al.
        Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity.
        Cancer Cell. 2018; 33 (e8): 44-59
        • Lachmann A.
        • Xu H.
        • Krishnan J.
        • Berger S.I.
        • Mazloom A.R.
        • Ma'ayan A.
        ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments.
        Bioinformatics. 2010; 26: 2438-2444
        • Lane D.P.
        Cancer. p53, guardian of the genome.
        Nature. 1992; 358: 15-16
        • Li F.
        • Yuan C.W.
        • Xu S.
        • Zu T.
        • Woappi Y.
        • Lee C.A.A.
        • et al.
        Loss of the Epigenetic Mark 5-hmC in Psoriasis: Implications for Epidermal Stem Cell Dysregulation.
        J Invest Dermatol. 2020; 140 (e3): 1266-12675
        • Li J.
        • Jiang T.X.
        • Hughes M.W.
        • Wu P.
        • Yu J.
        • Widelitz R.B.
        • et al.
        Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1.
        J Invest Dermatol. 2012; 132: 2681-2690
        • Li Y.Y.
        • Hanna G.J.
        • Laga A.C.
        • Haddad R.I.
        • Lorch J.H.
        • Hammerman P.S.
        Genomic analysis of metastatic cutaneous squamous cell carcinoma.
        Clin Cancer Res. 2015; 21: 1447-1456
        • Lian C.G.
        • Xu Y.
        • Ceol C.
        • Wu F.
        • Larson A.
        • Dresser K.
        • et al.
        Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma.
        Cell. 2012; 150: 1135-1146
        • Lien W.H.
        • Guo X.
        • Polak L.
        • Lawton L.N.
        • Young R.A.
        • Zheng D.
        • et al.
        Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage.
        Cell Stem Cell. 2011; 9: 219-232
        • Lin D.C.
        • Hao J.J.
        • Nagata Y.
        • Xu L.
        • Shang L.
        • Meng X.
        • et al.
        Genomic and molecular characterization of esophageal squamous cell carcinoma.
        Nat Genet. 2014; 46: 467-473
        • Marino S.
        • Vooijs M.
        • van Der Gulden H.
        • Jonkers J.
        • Berns A.
        Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum.
        Genes Dev. 2000; 14: 994-1004
        • Moran-Crusio K.
        • Reavie L.
        • Shih A.
        • Abdel-Wahab O.
        • Ndiaye-Lobry D.
        • Lobry C.
        • et al.
        Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation.
        Cancer Cell. 2011; 20: 11-24
        • Murata A.
        • Baba Y.
        • Ishimoto T.
        • Miyake K.
        • Kosumi K.
        • Harada K.
        • et al.
        TET family proteins and 5-hydroxymethylcytosine in esophageal squamous cell carcinoma.
        Oncotarget. 2015; 6: 23372-23382
        • Neri F.
        • Incarnato D.
        • Krepelova A.
        • Rapelli S.
        • Pagnani A.
        • Zecchina R.
        • et al.
        Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells.
        Genome Biol. 2013; 14: R91
        • Nestor C.E.
        • Ottaviano R.
        • Reddington J.
        • Sproul D.
        • Reinhardt D.
        • Dunican D.
        • et al.
        Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes.
        Genome Res. 2012; 22: 467-477
        • Pastor W.A.
        • Aravind L.
        • Rao A.
        TETonic shift: biological roles of TET proteins in DNA demethylation and transcription.
        Nat Rev Mol Cell Biol. 2013; 14: 341-356
        • Pickering C.R.
        • Zhou J.H.
        • Lee J.J.
        • Drummond J.A.
        • Peng S.A.
        • Saade R.E.
        • et al.
        Mutational landscape of aggressive cutaneous squamous cell carcinoma.
        Clin Cancer Res. 2014; 20: 6582-6592
        • Putiri E.L.
        • Tiedemann R.L.
        • Thompson J.J.
        • Liu C.
        • Ho T.
        • Choi J.H.
        • et al.
        Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells.
        Genome Biol. 2014; 15: R81
        • Quivoron C.
        • Couronne L.
        • Della Valle V.
        • Lopez C.K.
        • Plo I.
        • Wagner-Ballon O.
        • et al.
        TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis.
        Cancer Cell. 2011; 20: 25-38
        • Rezza A.
        • Wang Z.
        • Sennett R.
        • Qiao W.
        • Wang D.
        • Heitman N.
        • et al.
        Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles.
        Cell Rep. 2016; 14: 3001-3018
        • Rinaldi L.
        • Datta D.
        • Serrat J.
        • Morey L.
        • Solanas G.
        • Avgustinova A.
        • et al.
        Dnmt3a and Dnmt3b Associate with Enhancers to Regulate Human Epidermal Stem Cell Homeostasis.
        Cell Stem Cell. 2016; 19: 491-501
        • Saldanha G.
        • Joshi K.
        • Lawes K.
        • Bamford M.
        • Moosa F.
        • Teo K.W.
        • et al.
        5-Hydroxymethylcytosine is an independent predictor of survival in malignant melanoma.
        Mod Pathol. 2017; 30: 60-68
        • Shih A.H.
        • Jiang Y.
        • Meydan C.
        • Shank K.
        • Pandey S.
        • Barreyro L.
        • et al.
        Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia.
        Cancer Cell. 2015; 27: 502-515
        • Siegel R.L.
        • Miller K.D.
        • Fuchs H.E.
        • Jemal A.
        Cancer Statistics, 2021.
        CA Cancer J Clin. 2021; 71: 7-33
        • Song Y.
        • Li L.
        • Ou Y.
        • Gao Z.
        • Li E.
        • Li X.
        • et al.
        Identification of genomic alterations in oesophageal squamous cell cancer.
        Nature. 2014; 509: 91-95
        • Tahiliani M.
        • Koh K.P.
        • Shen Y.
        • Pastor W.A.
        • Bandukwala H.
        • Brudno Y.
        • et al.
        Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.
        Science. 2009; 324: 930-935
        • Tefferi A.
        • Lim K.H.
        • Abdel-Wahab O.
        • Lasho T.L.
        • Patel J.
        • Patnaik M.M.
        • et al.
        Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML.
        Leukemia. 2009; 23: 1343-1345
        • Tovy A.
        • Spiro A.
        • McCarthy R.
        • Shipony Z.
        • Aylon Y.
        • Allton K.
        • et al.
        p53 is essential for DNA methylation homeostasis in naive embryonic stem cells, and its loss promotes clonal heterogeneity.
        Genes Dev. 2017; 31: 959-972
        • Tsutsui K.
        • Machida H.
        • Nakagawa A.
        • Ahn K.
        • Morita R.
        • Sekiguchi K.
        • et al.
        Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions.
        Nat Commun. 2021; 12: 2577
        • Vasioukhin V.
        • Degenstein L.
        • Wise B.
        • Fuchs E.
        The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin.
        Proc Natl Acad Sci U S A. 1999; 96: 8551-8556
        • Vire E.
        • Brenner C.
        • Deplus R.
        • Blanchon L.
        • Fraga M.
        • Didelot C.
        • et al.
        The Polycomb group protein EZH2 directly controls DNA methylation.
        Nature. 2006; 439: 871-874
        • Xu Y.
        • Wu F.
        • Tan L.
        • Kong L.
        • Xiong L.
        • Deng J.
        • et al.
        Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells.
        Mol Cell. 2011; 42: 451-464
        • Yilmaz A.S.
        • Ozer H.G.
        • Gillespie J.L.
        • Allain D.C.
        • Bernhardt M.N.
        • Furlan K.C.
        • et al.
        Differential mutation frequencies in metastatic cutaneous squamous cell carcinomas versus primary tumors.
        Cancer. 2017; 123: 1184-1193
        • Zhang Y.
        • Liu T.
        • Meyer C.A.
        • Eeckhoute J.
        • Johnson D.S.
        • Bernstein B.E.
        • et al.
        Model-based analysis of ChIP-Seq (MACS).
        Genome Biol. 2008; 9: R137