Cells to Surgery Quiz: December 2021

Fabio Stefano Frech¹, Loren Hernandez¹, Ali Rajabi-Estarabadi¹,² and Keyvan Nouri¹

WHAT IS YOUR DIAGNOSIS?

Figure 1. Image reprinted from Journal of the American Academy of Dermatology 2015;73:529–31, with permission from Elsevier.

Editorial note: Welcome to the Journal of Investigative Dermatology (JID) Cells to Surgery Quiz. In this monthly online-only quiz, the first question (“What is your diagnosis?”) relates to the clinical image shown, while additional questions concern the findings reported in the JID article by Wang et al. (2021) (https://doi.org/10.1016/j.jid.2021.07.164).

Detailed answers and a list of relevant references are available following the Quiz Questions below.

QUIZ QUESTIONS

1. What is your diagnosis?
 a. Dermal melanocytic nevus
 b. Acrochordon
 c. Lipoma
 d. Cutaneous neurofibroma (CN)
 e. Fibroma

¹Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA; and ²Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA

Correspondence: Keyvan Nouri, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, 1150 Northwest 14th Street, 5th Floor, Unit 500, Miami, Florida 33136, USA; E-mail: knouri@med.miami.edu

© 2021 The Authors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.
2. **What is false about the management and/or prognosis of cutaneous and plexiform neurofibroma (PNF)?**
 a. CNs should not be removed, whether the patient has neurofibromatosis type 1 or not, unless there is a reason such as pain, bleeding, interference with function, or disfigurement.
 b. The effectiveness of selumetinib in the treatment of CNs is approved by Food and Drug Administration.
 c. Various options for removal, such as surgery, laser removal, or electodesiccation, are available.
 d. Selumetinib can induce tumor regression in PNFs.
 e. Surgical resection of PNF is limited to debulking of a specific area of a large lesion.

3. **Wang et al. (2021)** evaluated phosphorylated extracellular signal–regulated kinase (p-ERK) and phosphorylated MAPK/extracellular signal–regulated kinase kinase (MEK) (p-MEK) expression in PNFs and its association with clinicopathological parameters. All of the following are consistent with their findings, except:
 a. p-MEK/p-ERK expression heterogeneity was observed in PNF tissues and cell lines.
 b. PNF cell lines were NOT responsive to MEK inhibitor.
 c. TAK-733-resistant cells exhibited increased survival abilities compared with parental cell lines.
 d. Dinaciclib was identified as a promising agent in combination with TAK-733.
 e. The dinaciclib in combination with TAK-733 demonstrated efficacy in treating patient-derived xenograft PNF mouse model.

 See following pages for detailed answers
DETAILED ANSWERS

1. **What is your diagnosis?**

CORRECT ANSWER: d. Cutaneous neurofibroma (CN)

Neurofibromas are a form of benign, peripheral nerve sheath tumors that are composed of fibroblasts, Schwann cells, immune cells such as mast cells, and other nerve elements (Allaway et al., 2018; Ferner and O’Doherty, 2002; Ortonne et al., 2018). They are embedded in a collagenous extracellular matrix and can be categorized according to their anatomic location, such as cutaneous and subcutaneous neurofibromas, intraneural neurofibromas, and plexiform neurofibromas (PNFs) (Jouhilahti et al., 2011). They may also be localized (Lassmann et al., 1977; Woodrufl, 1999) or diffuse (Shiurba et al., 1984). They have no predilection for sex, race, or ethnicity, with an overwhelming majority occurring sporadically. Those that do not occur sporadically (approximately 10%) have a syndromic association with neurofibromatosis type 1 (NF1) or type 2 (Weiss, 2009). A deletion in the **NF1** (Abramowicz and Gos, 2014) gene, which codes for the tumor suppressor neurofibromin on chromosome 17q11.2, is the cause of neurofibromas in both sporadic and syndromic cases. This deletion results in a loss of RAS/MAPK signaling pathways involved in cell proliferation and differentiation (Abramowicz and Gos, 2014). When syndromic neurofibromas occur, there is a germline mutation in the **NF1** gene. In contrast, in sporadic cases of neurofibromas, only the cell lineages affected will carry the **NF1** mutation. Clinically, CNs appear as well-circumscribed lesions that may be either nodules or plaques (Jouhilahti et al., 2011). CNs may be nascent, flat, sessile, globular, or pedunculated according to one proposed classification system (Riccardi, 1992). Nascent neurofibromas cannot be detected by visual inspection or skin palpation but are recognized by imaging techniques (Riccardi, 1992). Flat CNs range in size from 0.5 to 12 mm and are visible by inspection. They may be slightly raised above the skin surface with either increased or decreased pigmentation compared with the surrounding skin (Riccardi, 1992). Sessile CNs are typically raised with a noticeable apex, which may reach 8–10 mm above the skin (Riccardi, 1992). Erythema or hyperpigmentation may be present, and they are usually 1 mm to 10–12 mm in diameter. Globular CNs are typically 20–30 mm in diameter with a maximum height of similar measure. Pedunculated CNs contain a stalk, typically 1–3 mm in diameter and a few millimeters long, which connects the more superficial portion (5–25 mm) above the surface of the skin with the deeper portion below (Riccardi, 1992). Clinically, individuals with CNs may be asymptomatic. However, 20% of patients with NF1 report pruritus (Brenaut et al., 2016). The underlying pathophysiology is not currently understood. Patients may also consider their CNs to be aesthetically displeasing. Immunohistochemically, neurofibromas may stain positively for S-100 and Sox10, CD34, neurofilament protein, acid mucopolysaccharides, and epithelial membrane antigen (Jokinen and Argenyi, 2010; Magro et al., 2010; Yeh and McCalmont, 2011). CNs are treated by surgical excision of the lesion. Less invasive surgical methods used in the treatment of neurofibromas include laser-based excision, radiofrequency ablation, photodynamic therapy, and electrodesiccation (Kim et al., 2016; Kriechbaumer et al., 2014; Lutterodt et al., 2016). However, given that they are benign, these lesions should not be removed unless a patient expresses pain, discomfort, and/or physical disfigurement.

Discussion of incorrect answers:

a. **Dermal melanocytic nevus:** A melanocytic nevus is a benign proliferation of nevus cells, which are a subset of melanocytes (Kincannon and Boutzale, 1999). These cells do not contain dendrites and are able to produce melanin (Lever and Schaumburg-Lever, 1990). Melanocytic nevi may be categorized according to whether they are congenital or acquired, with acquired nevi being subdivided by the location of the nevus cells (Kincannon and Boutzale, 1999). That is, in a dermal melanocytic nevus, the nevus cells are clustered in the dermal layer. Pre-disposing factors include a familial history of multiple nevi because it has been shown that germline polymorphisms may affect the amount and morphology of nevi (Orlow et al., 2015), the amount of childhood sun exposure (Aalborg et al., 2009; Dulon et al., 2002; Harrison et al., 2008; Oliveria et al., 2009; Wicke et al., 2003), and skin type (De Giorgi et al., 2018; Luther et al., 1996; Schaifer, 2015; Wicke et al., 2003) because more nevi are found in patients with less skin pigmentation. Dermal melanocytic nevi may range in color from being that of one’s skin tone to tan. They are less pigmented than other forms of nevi because nevus cells present in the dermal layer are no longer able to produce melanin (Marks and Miller, 2019). Dermal melanocytic nevi may be dome shaped, pedunculated, or papillomatous and have a rubbery texture on palpation (Rogers et al., 2016). Because most of these nevi are benign and remain so, there is no treatment necessary. Dermal melanocytic nevi are followed through observation for any potential changes, and those patients with multiple nevi are followed with periodic skin examinations.

b. **Acrochordon:** Acrochordons are benign, pedunculated lesions of the skin. In layman’s terms, they are known as skin tags. Their etiology is unknown, but it has been thought that they occur in areas where elastic tissue is scant—this results in atrophic...
Fibromas are benign growths characterized by the presence of fibroblastic and myofibroblastic cells (Lacka and Nasierowska-Guttmejer, 2019). These growths may be categorized according to the patient’s age of onset, such as in adult or juvenile fibromatoses. Juvenile fibromatoses include congenital generalized fibromatosis, aponeurotic fibroma, infantile digital fibromatosis, fibromatosis coli, and dermatofibrosis lenticularis. Adult fibromatoses are subdivided into superficial and deep, with some of the superficial fibromatoses being palmar and planar fibromatosis, dermatofibromas, nodular fasciitis, and elastofibromas (Walker et al., 2012). Some of the deep fibromatoses include extra-abdominal, abdominal, and intra-abdominal fibromatosis (Ganeshan et al., 2019). The etiology of these growths is currently unknown. Some postulate that a progenitor mesenchymal cell may be influenced by hormones such as estrogen, trauma, and/or pregnancy to become this tumor (Fiore et al., 2016, 2009; Kasper et al., 2017; Koskenvuo et al., 2017). Histologically, both superficial and deep growths are relatively similar. The WNT signaling pathway is altered in both forms. However, the superficial form does not contain mutations in the β-catenin or APC gene (Lacka and Nasierowska-Guttmejer, 2019). Superficial fibromas typically grow at a slow rate and are small in size.

c. Lipoma: Lipomas are benign, subcutaneous tumors of adipocytes (Charifa et al., 2021; Creytens, 2019; Tong et al., 2020). They are relatively common and can be found where normal adipocytes are present. Enclosed in a fibrous capsule, they are typically soft and painless mesenchymal nodules without a clear etiology. Some speculate that trauma plays a role in their formation because it is known that trauma-induced cytokine release stimulates the differentiation and maturation of adipocytes (Aust et al., 2007). Their incidence is increased in patients with hyperlipidemia, obesity, and diabetes mellitus (Kolb et al., 2021). There is a slight predilection for males, and they can occur at any age (Kolb et al., 2021). However, most often, they are discovered in the fourth to sixth decades of life (Fornage and Tassin, 1991). Lipomas grow slowly and may grow to be 2–3 cm in the final size, although there are lipomas that may grow beyond that size and reach >10 cm (Allen et al., 2007). Histopathologically, lipomas consist of normal-appearing adipocytes and fibrous connective tissue (Burt and Huang, 2017). Given their benign nature, lipomas may be observed long-term. If treatment is desired, usually for cosmetic reasons, they can be surgically excised (Salam, 2002).

d. Fibroma: Fibromas are benign growths characterized by the presence of fibroblastic and myofibroblastic cells (Lacka and Nasierowska-Guttmejer, 2019). These growths may be categorized according to the patient’s age of onset, such as in adult or juvenile fibromatoses. Juvenile fibromatoses include congenital generalized fibromatosis, aponeurotic fibroma, infantile digital fibromatosis, fibromatosis coli, and dermatofibrosis lenticularis. Adult fibromatoses are subdivided into superficial and deep, with some of the superficial fibromatoses being palmar and plantar fibromatosis, dermatofibromas, nodular fasciitis, and elastofibromas (Walker et al., 2012). Some of the deep fibromatoses include extra-abdominal, abdominal, and intra-abdominal fibromatosis (Ganeshan et al., 2019). The etiology of these growths is currently unknown. Some postulate that a progenitor mesenchymal cell may be influenced by hormones such as estrogen, trauma, and/or pregnancy to become this tumor (Fiore et al., 2016, 2009; Kasper et al., 2017; Koskenvuo et al., 2017). Histologically, both superficial and deep growths are relatively similar. The WNT signaling pathway is altered in both forms. However, the superficial form does not contain mutations in the β-catenin or APC gene (Lacka and Nasierowska-Guttmejer, 2019). Superficial fibromas typically grow at a slow rate and are small in size.

2. What is false about the management and/or prognosis of cutaneous and plexiform neurofibroma (PNF)?

CORRECT ANSWER: b. The effectiveness of selumetinib in the treatment of CNs is approved by Food and Drug Administration.

Currently, there are no Food and Drug Administration (FDA)-approved oral or topical therapies for the treatment of CNs. The standard of care for the treatment of symptomatic CNs is the physical removal of individual lesions that are burdensome to the patient (Chamseddin and Le, 2019). One of the known pathophysiologic mechanisms that are linked to the rise of CNs is the RAF–MAPK extracellular signal-regulated kinase (ERK) kinase (MEK)–ERK pathway, which becomes activated by unregulated RAS (Chamseddin and Le, 2019). Combination therapy with selumetinib has been shown to be effective in treating specific types of nonsquamous nonsmall cell lung cancer and malignant peripheral nerve sheath tumors (Ahsan et al., 2016; Melosky et al., 2019). The mechanism of action of selumetinib is through the inhibition of MEK1/2, involved in the pathway mentioned earlier that is linked to the development of neurofibromas (Markham and Keam, 2020). Currently, a pilot phase 2 trial assessing the effectiveness of selumetinib for the treatment of NF1 and CNs is currently underway (National Cancer Institute, 2016). The trial has two main objectives: primarily, the authors want to determine whether the use of selumetinib can result in the shrinkage of CNs; secondarily, the authors want to determine the effects of selumetinib on target inhibition on CNs by assessing the levels of phosphorylated ERK (p-ERK) and phosphorylated protein kinase B before and after treatment (National Cancer Institute, 2016). Enrolled patients receive selumetinib orally twice daily for a cycle of 28 days for up to 24 cycles in the absence of disease progression or
unacceptable adverse outcomes. After completion of treatment, patients are followed up every 4 months for 1 year (National Cancer Institute, 2016).

Other systemic therapies that have been investigated for the treatment of CNs and PNFs include histamine receptor antagonists, stem-molecule factor receptor (c-KIT) inhibitors, and VEGF inhibitors (Massachusetts General Hospital, 2008; Riccardi, 1993, 1987; Robertson et al., 2012). Although not yet proven to achieve a reduction in CNs growth and proliferation, ketotifen has been shown to be effective in reducing symptoms of pain and pruritus through its H₁ histamine antagonist and mast cell stabilizing properties (Riccardi, 1993, 1987). In an open-label pilot phase 2 trial, imatinib (a small molecule c-KIT inhibitor) was shown to cause regression of disease in 26% of patients with PNFs caused by NF1 (Robertson et al., 2012). This trial did not assess the effect of imatinib in CNs. A VEGF antibody, ranibizumab, is currently being studied to determine whether inhibition of VEGF signaling causes tumor volume shrinkage and alterations in interstitial fluid pressure within CNs (Massachusetts General Hospital, 2008). The lack of evolution and quiescent nature of mature CNs suggests that further studies might benefit from focusing on the prevention of CN growth at an earlier period of development rather than on reduction in size at later stages (Allaway et al., 2018; Chamseddin and Le, 2019).

Discussion of incorrect answers:

a. **CNs should not be removed, whether the patient has NF1 or not, unless there is a reason such as pain, bleeding, interference with function, or disfigurement:** Given their benign histology composed of a variety of nonmalignant cells and elements, CNs can be left untreated, and reassurance should be provided to the patient. Even though CNs can be asymptomatic, up to 20% of patients can complain of pruritus that is localized to one or more neurofibromas (Ortonne et al., 2018). In addition, a lower QOL has been shown to be associated with visibility and disease severity of CNs (Vranceanu et al., 2013). If patients are symptomatic or have a significant cosmetic burden, many treatment modalities exist such as surgical excision, electrodesiccation, photocoagulation, and laser treatment (Chamseddin and Le, 2019). These treatment options can be offered in an individualized manner depending on a variety of factors, including preferred cosmetic outcome, the burden of disease, and tumor size and location (Chamseddin and Le, 2019; Chamseddin et al., 2019).

c. **Various options for removal, such as surgery, laser removal, or electrodesiccation, are available:** Even though CNs can be left untreated owing to their benign nature, some patients might choose to have them physically removed for various reasons such as pain, itching, bleeding, or cosmetic burden. As a result, there are various methods of surgical removal of CNs that may be offered to patients with unwanted CNs (Chamseddin and Le, 2019). For cosmetically sensitive areas, surgical excision, photocoagulation, or a modified biopsy removal method can be used depending on the size and morphology of the lesion. For lesions >2 cm and of a globular morphology, surgical excision is preferred; otherwise, for lesions <2 cm and of any morphology, photocoagulation or a modified biopsy method can be performed (Chamseddin and Le, 2019). For patients with multiple CNs in cosmetically insensitive areas such as the extremities and trunk, carbon dioxide (CO₂) lasers and electrodesiccation are sufficient for treatment (Becker, 1991; Lutterodt et al., 2016). Although CO₂ lasers can be efficient at removing CNs, it is important that patients are aware that hypertrophic scarring is a possible unintended side effect of the procedure (Ostertag et al., 2002).

d. Selumetinib can induce tumor regression in PNFs: In 2020, selumetinib was approved by the FDA for use in pediatric patients aged ≥2 years with NF1 who have symptomatic, inoperable PNFs (FDA, 2020). A phase 1 trial on children aged 3–18 years to evaluate maximum tolerable dose, plasma pharmacokinetics, and response to treatment was performed (Dombi et al., 2016). Patients received 10-mg and 25-mg tablets every 12 hours on a continuous dosing schedule for 28-day cycles, and a volumetric magnetic resonance imaging (MRI) analysis was used to measure response to treatment. Dosing was calculated based on body-surface area using a nomogram. Evaluation of response to treatment revealed a >20% decrease in tumor volume for 71% of participants (Dombi et al., 2016). An open-label, phase 2 trial on children aged 2–18 years was completed to evaluate the clinical benefit and objective response rate of selumetinib for inoperable PNFs (Gross et al., 2020). A total of 50 patients received 25 mg/m² of body surface area every 12 hours for 28-day cycles. Of the 50 patients, 34 had a confirmed partial response, and 28 of those patients had a response lasting >1 year. In addition, there were clinically meaningful improvements in areas related to tumor pain intensity, pain in daily functioning, overall health-related QOL, functional strength, and range of motion (Gross et al., 2020).

e. Surgical resection of PNF is limited to debulking of a specific area of a large lesion: Unlike CNs, PNFs have about a 5% risk for malignant transformation (Gutmann, 1998). PNFs can be classified into three different categories on the basis of growth...
characteristics identified by MRI: superficial, displacing, and invasive (Friedrich et al., 2005a). For superficial PNFs, total or subtotal resection is possible without negatively affecting functionality (Friedrich et al., 2005a, 2005b). Invasive PNFs are more challenging to resect owing to the risks of injuring adjacent structures (Friedrich et al., 2005a). In addition, the histology of the tumor will affect the surgical approach used for resection. A PNF that has undergone malignant transformation requires margins free of tumor and can sometimes only be realistically achieved through amputation of the affected area owing to the extensive functional nerve damage (Canavese and Krajbich, 2011). A benign PNF can be treated with marginal resection; yet, depending on the location and extent of invasion, the surgical resection is limited to debulking a certain area of a larger lesion to ameliorate pain, improve cosmesis, and recover functionality (Canavese and Krajbich, 2011; Vetrano et al., 2019).

3. Wang et al. (2021) evaluated phosphorylated extracellular signal–regulated kinase (p-ERK) and phosphorylated MAPK/extracellular signal–regulated kinase (MEK) (p-MEK) expression in PNFs and its association with clinicopathological parameters. All of the following are consistent with their findings, except:

CORRECT ANSWER: b. PNF cell lines were NOT responsive to MEK inhibitor.

Wang et al. (2021) investigated how PNF cells respond to different MEK inhibitors (MEKis) in vitro. They evaluated the effectiveness of selumetinib, trametinib, PD0325901, TAK-733, cobimetinib, and refametinib in three NF1-deficient PNF cell lines and one Schwann cell line as a control after 72 hours of incubation. The MEKi TAK-733, trametinib, and cobimetinib showed to be more effective for inhibiting PNF cell viability than the other three inhibitors. In addition, these agents exhibited a more sensitive trend to NF1-deficient PNFs, with a lower half maximal inhibitory concentration level, than the normal Schwann cell control.

Discussion of incorrect answers:

a. p-MEK/p-ERK expression heterogeneity was observed in PNF tissues and cell lines: Wang et al. (2021) evaluated cancer molecular heterogeneity by employing a PNF tissue microarray containing two tissue cores per tumor. They evaluated different expression intensities of different markers, including p-MEK, p-ERK, MEK, and ERK, in the PNF tissue microarray. They showed that the p-MEK and p-ERK protein levels in different clinical PNF tumor tissues and cell lines were heterogeneous, which may provide an explanation for differences in treatment efficacy.

c. TAK-733–resistant cells exhibited increased survival abilities compared with parental cell lines: In addition, they established drug-resistant PNF cell lines from parental ipNF05.5 and ipNF9511.bc cells through chronic treatment with low-concentration TAK-733 to address the mechanism of drug resistance after MEKi monotherapy and to further evaluate the potential synergistic effects in reducing tumor growth. Drug resistance to TAK-733 was obtained, and ipNF05.5R and ipNF9511.bcR cells exhibited significantly higher viability than parental cells according to CCK-8 assay.

d. Dinaciclib was identified as a promising agent in combination with TAK-733: TAK-733–resistant tumor cells had higher CDK1 expression than parental cells, demonstrated by western blot. The expression of survivin was also higher in these cells than in parental cells, suggesting that the resistant cells developed inhibited apoptosis after the induction of resistance. This result is consistent with their drug screening results and RNA sequencing analysis because CDK1 was one of the identified targets of dinaciclib. Dinaciclib may become a promising therapeutic agent for PNFs, especially when resistance occurs.

e. The dinaciclib in combination with TAK-733 demonstrated efficacy in treating patient-derived xenograft PNF mouse model: Wang et al. (2021) also evaluated the in vivo efficacy of the combination treatment (CDK inhibitor [CDKi] dinaciclib with TAK-733) by generating a patient-derived xenograft model by grafting freshly extracted PNF tissue onto NSG mice. The mice were first given trametinib (1 mg/kg), TAK-733 (30 mg/kg), or control medium daily by gavage for 4 weeks. After administration, TAK-733 significantly reduced the tumor weight by 50–60% compared with the control treatment. Trametinib also showed a trend for decreasing tumor weight, although it was not statistically significant. They also evaluated the effectiveness of combination therapy with the CDKi dinaciclib (the combination group). After intraperitoneal injection of dinaciclib (20 mg/kg) three times a week over a 4-week treatment cycle, the tumors in the combination group were significantly reduced compared with those in the TAK-733 monotherapy group.

ORCIDs
Fabio Stefano Frech, https://orcid.org/0000-0002-0689-6464
Keyvan Nouri, https://orcid.org/0000-0002-9950-8685

