Advertisement
Journal of Investigative Dermatology Home

STK11 Prevents Invasion Through STAT3/5 and FAK Repression in Cutaneous Melanoma.

Published:October 29, 2021DOI:https://doi.org/10.1016/j.jid.2021.09.035

      ABSTRACT

      The serine/threonine kinase 11 (STK11/LKB1) is a tumor suppressor involved in metabolism and cell motility. In BRAFV600E melanoma, STK11 is inactivated by ERK and RSK, preventing it from binding and activating AMPK and promoting melanoma cell proliferation. Although STK11 mutations occur in 5-10% of cutaneous melanoma, few functional studies have been performed. By knocking out STK11 with CRISPR/Cas9 in two human BRAF-mutant melanoma cell lines, we found that STK11-loss reduced the sensitivity to a BRAF inhibitor (BRAFi). More strikingly, STK11 loss led to an increased invasive phenotype in both 3-dimensional spheroids and in vivo zebrafish xenograft models. STK11 overexpression consistently reverted the invasive phenotype.
      Interestingly, STK11 knockout increased invasion also in an NRAS-mutant melanoma cell line. Furthermore, while STK11 was expressed in primary human melanoma tumors, its expression significantly decreased in melanoma metastases especially in brain metastases. In the STK11-knockout cells we observed increased activating phosphorylation of STAT3/5 and FAK. Using inhibitors of STAT3/5 and FAK, we reverted the invasive phenotype in both BRAF and NRAS mutated cells. Our findings confirm an increased invasive phenotype upon STK11-inactivation in BRAF and NRAS-mutant cutaneous melanoma that can be targeted by STAT3/5 and FAK-inhibition.

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Society Members (SID/ESDR), remember to log in for access.
      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Aretz S.
        • Stienen D.
        • Uhlhaas S.
        • Loff S.
        • Back W.
        • Pagenstecher C.
        • et al.
        High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome.
        Hum Mutat. 2005; 26: 513-519https://doi.org/10.1002/humu.20253
        • Daniell J.
        • Plazzer J.-P.
        • Perera A.
        • Macrae F.
        An exploration of genotype-phenotype link between Peutz-Jeghers syndrome and STK11: a review.
        Fam Cancer. 2018; 17: 421-427https://doi.org/10.1007/s10689-017-0037-3
        • Forbes S.A.
        • Bindal N.
        • Bamford S.
        • Cole C.
        • Kok C.Y.
        • Beare D.
        • et al.
        COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer.
        Nucleic Acids Res. 2011; 39: D945-950https://doi.org/10.1093/nar/gkq929
        • Gilbert-Ross M.
        • Konen J.
        • Koo J.
        • Shupe J.
        • Robinson B.S.
        • Wiles W.G.
        • et al.
        Targeting adhesion signaling in KRAS, LKB1 mutant lung adenocarcinoma.
        JCI Insight. 2017; 2e90487https://doi.org/10.1172/jci.insight.90487
        • Gu L.
        • Vogiatzi P.
        • Puhr M.
        • Dagvadorj A.
        • Lutz J.
        • Ryder A.
        • et al.
        Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo.
        Endocr Relat Cancer. 2010; 17: 481-493https://doi.org/10.1677/ERC-09-0328
        • Hess A.R.
        • Postovit L.-M.
        • Margaryan N.V.
        • Seftor E.A.
        • Schneider G.B.
        • Seftor R.E.B.
        • et al.
        Focal Adhesion Kinase Promotes the Aggressive Melanoma Phenotype.
        Cancer Res. 2005; 65: 9851-9860https://doi.org/10.1158/0008-5472.CAN-05-2172
        • Jinek M.
        • Chylinski K.
        • Fonfara I.
        • Hauer M.
        • Doudna J.A.
        • Charpentier E.
        A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
        Science. 2012; 337: 816-821https://doi.org/10.1126/science.1225829
      1. Jungbluth AA, Busam KJ. 29 - Immunohistochemistry for the Diagnosis of Melanocytic Proliferations. In: Busam KJ, Gerami P, Scolyer RA, editors. Pathol. Melanocytic Tumors, Philadelphia: Elsevier; 2019, p. 348–363. https://doi.org/10.1016/B978-0-323-37457-6.00029-8.

        • Kim D.W.
        • Chung H.K.
        • Park K.C.
        • Hwang J.H.
        • Jo Y.S.
        • Chung J.
        • et al.
        Tumor Suppressor LKB1 Inhibits Activation of Signal Transducer and Activator of Transcription 3 (STAT3) by Thyroid Oncogenic Tyrosine Kinase Rearranged in Transformation (RET)/Papillary Thyroid Carcinoma (PTC).
        Mol Endocrinol. 2007; 21: 3039-3049https://doi.org/10.1210/me.2007-0269
        • Kinslechner K.
        • Schörghofer D.
        • Schütz B.
        • Vallianou M.
        • Wingelhofer B.
        • Mikulits W.
        • et al.
        Malignant Phenotypes in Metastatic Melanoma are Governed by SR-BI and its Association with Glycosylation and STAT5 Activation.
        Mol Cancer Res MCR. 2018; 16: 135-146https://doi.org/10.1158/1541-7786.MCR-17-0292
        • Kline E.R.
        • Shupe J.
        • Gilbert-Ross M.
        • Zhou W.
        • Marcus A.I.
        LKB1 Represses Focal Adhesion Kinase (FAK) Signaling via a FAK-LKB1 Complex to Regulate FAK Site Maturation and Directional Persistence.
        J Biol Chem. 2013; 288: 17663-17674https://doi.org/10.1074/jbc.M112.444620
        • Koyama S.
        • Akbay E.A.
        • Li Y.Y.
        • Aref A.R.
        • Skoulidis F.
        • Herter-Sprie G.S.
        • et al.
        STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment.
        Cancer Res. 2016; 76: 999-1008https://doi.org/10.1158/0008-5472.CAN-15-1439
        • Kozar I.
        • Margue C.
        • Rothengatter S.
        • Haan C.
        • Kreis S.
        Many ways to resistance: How melanoma cells evade targeted therapies.
        Biochim Biophys Acta BBA - Rev Cancer. 2019; 1871: 313-322https://doi.org/10.1016/j.bbcan.2019.02.002
        • Kulesza D.W.
        • Przanowski P.
        • Kaminska B.
        Knockdown of STAT3 targets a subpopulation of invasive melanoma stem-like cells.
        Cell Biol Int. 2019; 43: 613-622https://doi.org/10.1002/cbin.11134
        • Liu W.
        • Monahan K.B.
        • Pfefferle A.D.
        • Shimamura T.
        • Sorrentino J.
        • Chan K.T.
        • et al.
        LKB1/STK11 Inactivation Leads to Expansion of a Prometastatic Tumor Subpopulation in Melanoma.
        Cancer Cell. 2012; 21: 751-764https://doi.org/10.1016/j.ccr.2012.03.048
        • Marcus A.I.
        • Zhou W.
        LKB1 regulated pathways in lung cancer invasion and metastasis.
        J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2010; 5: 1883-1886https://doi.org/10.1097/JTO.0b013e3181fbc28a
        • Momcilovic M.
        • Shackelford D.B.
        Targeting LKB1 in cancer – exposing and exploiting vulnerabilities.
        Br J Cancer. 2015; 113: 574-584https://doi.org/10.1038/bjc.2015.261
        • Nagy R.
        • Sweet K.
        • Eng C.
        Highly penetrant hereditary cancer syndromes.
        Oncogene. 2004; 23: 6445-6470https://doi.org/10.1038/sj.onc.1207714
        • Ollila S.
        • Domènech-Moreno E.
        • Laajanen K.
        • Wong I.P.L.
        • Tripathi S.
        • Pentinmikko N.
        • et al.
        Stromal Lkb1 deficiency leads to gastrointestinal tumorigenesis involving the IL-11–JAK/STAT3 pathway.
        J Clin Invest. 2018; 128: 402-414https://doi.org/10.1172/JCI93597
        • Poffenberger M.C.
        • Metcalfe-Roach A.
        • Aguilar E.
        • Chen J.
        • Hsu B.E.
        • Wong A.H.
        • et al.
        LKB1 deficiency in T cells promotes the development of gastrointestinal polyposis.
        Science. 2018; 361: 406-411https://doi.org/10.1126/science.aan3975
        • Rossi A.
        • Roberto M.
        • Panebianco M.
        • Botticelli A.
        • Mazzuca F.
        • Marchetti P.
        Drug resistance of BRAF-mutant melanoma: Review of up-to-date mechanisms of action and promising targeted agents.
        Eur J Pharmacol. 2019; 862: 172621https://doi.org/10.1016/j.ejphar.2019.172621
        • Rowan A.
        • Bataille V.
        • MacKie R.
        • Healy E.
        • Bicknell D.
        • Bodmer W.
        • et al.
        Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malignant melanomas.
        J Invest Dermatol. 1999; 112: 509-511https://doi.org/10.1046/j.1523-1747.1999.00551.x
        • Schadendorf D.
        • van Akkooi A.C.J.
        • Berking C.
        • Griewank K.G.
        • Gutzmer R.
        • Hauschild A.
        • et al.
        Melanoma. The Lancet. 2018; 392: 971-984https://doi.org/10.1016/S0140-6736(18)31559-9
        • Skoulidis F.
        • Goldberg M.E.
        • Greenawalt D.M.
        • Hellmann M.D.
        • Awad M.M.
        • Gainor J.F.
        • et al.
        STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma.
        Cancer Discov. 2018; 8: 822-835https://doi.org/10.1158/2159-8290.CD-18-0099
        • Sobottka S.B.
        • Haase M.
        • Fitze G.
        • Hahn M.
        • Schackert H.K.
        • Schackert G.
        Frequent Loss of Heterozygosity at the 19p13.3 Locus Without LKB1/STK11 Mutations in Human Carcinoma Metastases to the Brain.
        J Neurooncol. 2000; 49: 187-195https://doi.org/10.1023/A:1006442024874
        • Talati P.G.
        • Gu L.
        • Ellsworth E.M.
        • Girondo M.A.
        • Trerotola M.
        • Hoang D.T.
        • et al.
        Jak2-Stat5a/b Signaling Induces Epithelial-to-Mesenchymal Transition and Stem-Like Cell Properties in Prostate Cancer.
        Am J Pathol. 2015; 185: 2505-2522https://doi.org/10.1016/j.ajpath.2015.04.026
        • Teng Y.
        • Ross J.L.
        • Cowell J.K.
        The involvement of JAK-STAT3 in cell motility, invasion, and metastasis.
        JAK-STAT. 2014; 3https://doi.org/10.4161/jkst.28086
        • Xie T.
        • Huang F.-J.
        • Aldape K.D.
        • Kang S.-H.
        • Liu M.
        • Gershenwald J.E.
        • et al.
        Activation of Stat3 in Human Melanoma Promotes Brain Metastasis.
        Cancer Res. 2006; 66: 3188-3196https://doi.org/10.1158/0008-5472.CAN-05-2674
        • Xiong H.
        • Su W.-Y.
        • Liang Q.-C.
        • Zhang Z.-G.
        • Chen H.-M.
        • Du W.
        • et al.
        Inhibition of STAT5 induces G1 cell cycle arrest and reduces tumor cell invasion in human colorectal cancer cells.
        Lab Invest. 2009; 89: 717-725https://doi.org/10.1038/labinvest.2009.11
        • Zhao N.
        • Wilkerson M.D.
        • Shah U.
        • Yin X.
        • Wang A.
        • Hayward M.C.
        • et al.
        Alterations of LKB1 and KRAS and Risk of Brain Metastasis: Comprehensive Characterization by Mutation Analysis, Copy Number, and Gene Expression in Non-Small-Cell Lung Carcinoma.
        Lung Cancer Amst Neth. 2014; 86: 255-261https://doi.org/10.1016/j.lungcan.2014.08.013
        • Zhao R.-X.
        • Xu Z.-X.
        Targeting the LKB1 Tumor Suppressor.
        Curr Drug Targets. 2014; 15: 32-52
        • Zheng B.
        • Jeong J.H.
        • Asara J.M.
        • Yuan Y.-Y.
        • Granter S.R.
        • Chin L.
        • et al.
        Oncogenic B-RAF Negatively Regulates the Tumor Suppressor LKB1 to Promote Melanoma Cell Proliferation.
        Mol Cell. 2009; 33: 237-247https://doi.org/10.1016/j.molcel.2008.12.026
        • Zhou W.
        • Zhang J.
        • Marcus A.I.
        LKB1 tumor suppressor: Therapeutic opportunities knock when LKB1 is inactivated.
        Genes Dis. 2014; 1: 64-74https://doi.org/10.1016/j.gendis.2014.06.002