Advertisement
Journal of Investigative Dermatology Home

Skin fibrosis and recovery is dependent on Wnt activation via DPP4

Published:November 19, 2021DOI:https://doi.org/10.1016/j.jid.2021.10.025

      Abstract

      Fibrosis is the life-threatening, excessive accumulation of extracellular matrix (ECM) and is sometimes associated with a loss of lipid-filled cells in skin and other organs. Understanding the mechanisms of fibrosis and associated lipodystrophy and their reversal may reveal new targets for therapeutic intervention. In vivo genetic models are needed to identify key targets that induce recovery from established fibrosis. Wnt signaling is activated in animal and human fibrotic diseases across organs. Here, we developed a genetically inducible and reversible Wnt activation model and show it is sufficient to cause fibrotic dermal remodeling, including ECM expansion and shrinking of dermal adipocytes. Upon withdrawal from Wnt activation, Wnt-induced fibrotic remodeling was reversed in mouse skin -- fully restoring skin architecture. Next, we demonstrated CD26/Dipeptidyl peptidase 4 (DPP4) is a Wnt/β-catenin-responsive gene and a functional mediator of fibrotic transformation. We provide genetic evidence that the Wnt/DPP4 axis is required to drive fibrotic dermal remodeling and associated with human skin fibrosis severity. Remarkably, DPP4 inhibitors can be repurposed to accelerate recovery from established Wnt-induced fibrosis. Collectively, this study identifies Wnt/DPP4 axis as a key driver of ECM homeostasis and dermal fat loss, providing therapeutic avenues to manipulate the onset and reversal of tissue-fibrosis.

      Keywords

      Abbreviations:

      ECM (Extracellular matrix), DPP4 (Dipeptidyl peptidase 4), DWAT (Dermal white adipose tissue), En1 (Engrailed 1), β-catistab (β-catenin inducibly stabilized), PLIN1 (Perilipin 1), CHP (Collagen hybridizing peptide), HDM (High density matrix)
      To read this article in full you will need to make a payment
      Purchase one-time access
      Society Members (SID/ESDR), remember to log in for access.
      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Agha, El E.
        • Moiseenko A.
        • Kheirollahi V.
        • De Langhe S.
        • Crnkovic S.
        • Kwapiszewska G.
        • et al.
        Two-Way Conversion between Lipogenic and Myogenic Fibroblastic Phenotypes Marks the Progression and Resolution of Lung Fibrosis.
        Cell Stem Cell. 2017; 20: 261-263
        • Akhmetshina A.
        • Palumbo K.
        • Dees C.
        • Bergmann C.
        • Venalis P.
        • Zerr P.
        • et al.
        Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis.
        Nature Communications. 2012; 3 (735–12)
        • Alexander C.M.
        • Kasza I.
        • Yen E.
        • Reeder S.
        • Hernando D.
        • Gallo R.
        • et al.
        Dermal white adipose tissue: a new component of the thermogenic response.
        J Lipid Res. 2015; 56: 2061-2069
        • Atit R.
        • Sgaier S.K.
        • Mohamed O.A.
        • Taketo M.
        • Dufort D.
        • Joyner A.
        • et al.
        Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse.
        Developmental Biology. 2006; 296: 164-176
        • Baticic Pucar L.
        • Pernjak Pugel E.
        • Detel D.
        • Varlejen J.
        Involvement of DPP IV/CD26 in cutaneous wound healing process in mice.
        Wound Repair Regen. 2017; 25: 25-40
        • Belteki G.
        • Haigh J.
        • Kabacs N.
        • Haigh K.
        • Sison K.
        • Costantini F.
        • et al.
        Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction.
        Nucleic Acids Research. 2005; 33: 1-10
        • Beyer C.
        • Reichert H.
        • Akan H.
        • Mallano T.
        • Schramm A.
        • Dees C.
        • et al.
        Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis.
        Ann Rheum Dis. 2013; 72: 1255-1258
        • Beyer C.
        • Schramm A.
        • Akhmetshina A.
        • Dees C.
        • Kireva T.
        • Gelse K.
        • et al.
        β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis.
        Ann Rheum Dis. 2012; 71: 761-767
        • Bouchard L.
        • Faucher G.
        • Tchernof A.
        • Deshaies Y.
        • Lebel S.
        • Hould F.-S.
        • et al.
        Comprehensive genetic analysis of the dipeptidyl peptidase-4 gene and cardiovascular disease risk factors in obese individuals.
        Acta Diabetol. 2009; 46: 13-21
        • Butzelaar L.
        • Niessen F.B.
        • Talhout W.
        • Schooneman D.
        • Ulrich M.M.
        • Beelen R.
        • et al.
        Different properties of skin of different body sites: The root of keloid formation?.
        Wound Repair Regen. 2017; 25: 758-766
        • Chen Y.
        • Chen X.
        • Ji Y.-R.
        • Zhu S.
        • Bu F.-T.
        • Du X.-S.
        • et al.
        PLK1 regulates hepatic stellate cell activation and liver fibrosis through Wnt/β-catenin signalling pathway.
        J Cell Mol Med. 2020; 24: 7405-7416
        • Distler J.H.W.
        • Györfi A.-H.
        • Ramanujam M.
        • Whitfield M.
        • Königshoff M.
        • Lafyatis R.
        Shared and distinct mechanisms of fibrosis.
        Nature Reviews Rheumatology. 2019; 15: 705-730
        • Dobrian A.D.
        • Ma Q.
        • Lindsay J.W.
        • Leone K.
        • Ma K.
        • Coben J.
        • et al.
        Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice.
        Am J Physiol Endocrinol Metab. 2011; 300: E410-E421
        • Driskell R.R.
        • Jahoda C.A.B.
        • Chuong C.-M.
        • Watt F.M.
        • Horsley V.
        Defining dermal adipose tissue.
        Exp Dermatol. 2014; 23: 629-631
        • Driskell R.R.
        • Lichtenberger B.M.
        • Hoste E.
        • Kretzschmar K.
        • Simons B.D.
        • Charalambous M.
        • et al.
        Distinct fibroblast lineages determine dermal architecture in skin development and repair.
        Nature. 2013; 504: 277-281
      1. ENCODE Project Consortium. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74.

        • Ezure T.
        • Amano S.
        Influence of subcutaneous adipose tissue mass on dermal elasticity and sagging severity in lower cheek.
        Skin Res Technol. 2010; 16: 332-338
        • Ezure T.
        • Amano S.
        Increment of subcutaneous adipose tissue is associated with decrease of elastic fibres in the dermal layer.
        Exp Dermatol. 2015; 24: 924-929
        • Festa E.
        • Fretz J.
        • Berry R.
        • Schmidt B.
        • Rodeheffer M.
        • Horowitz M.
        • et al.
        Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling.
        Cell. 2011; 146: 761-771
        • Gaytan F.
        • Morales C.
        • Reymundo C.
        • Tena-Sempere M.
        A novel RGB-trichrome staining method for routine histological analysis of musculoskeletal tissues.
        Sci Rep. 2020; 10 (16659–13)
        • Gorrell M.D.
        Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders.
        Clin Sci. 2005; 108: 277-292
        • Hamburg E.J.
        • Atit R.P.
        Sustained β-catenin activity in dermal fibroblasts is sufficient for skin fibrosis.
        J Invest Dermatol. 2012; 132: 2469-2472
        • Hamburg-Shields E.
        • DiNuoscio G.J.
        • Mullin N.K.
        • Lafyatis R.
        • Atit R.P.
        • et al.
        Sustained β-catenin activity in dermal fibroblasts promotes fibrosis by up-regulating expression of extracellular matrix protein-coding genes.
        J Pathol. 2015; 235: 686-697
        • Hernandez-Gea V.
        • Friedman S.L.
        Pathogenesis of liver fibrosis.
        Annu Rev Pathol. 2011; 6: 425-456
        • Hu H.-H.
        • Cao G.
        • Wu X.-Q.
        • Vaziri N.D.
        • Zhao Y.-Y.
        Wnt signaling pathway in aging-related tissue fibrosis and therapies.
        Ageing Res Rev. 2020; 60: 101063
        • Hu M.S.
        • Longaker M.T.
        Dipeptidyl Peptidase-4, Wound Healing, Scarring, and Fibrosis.
        Plastic and Reconstructive Surgery. 2016; 138: 1026-1031
        • Huang L.
        • Lin T.
        • Shi M.
        • Chen X.
        • Wu P.
        Liraglutide suppresses production of extracellular matrix proteins and ameliorates renal injury of diabetic nephropathy by enhancing Wnt/β-catenin signaling.
        AJP: Renal Physiology. 2020; 319: F458-F468
        • Hunzelmann N.
        • Anders S.
        • Sollberg S.
        • Schönherr E.
        • Krieg T.
        Co-ordinate induction of collagen type I and biglycan expression in keloids.
        Br J Dermatol. 1996; 135: 394-399
        • Hwang J.
        • Huang Y.
        • Burwell T.J.
        • Peterson N.C.
        • Connor J.
        • Weiss S.J.
        • et al.
        In Situ Imaging of Tissue Remodeling with Collagen Hybridizing Peptides.
        ACS Nano. 2017; 11: 9825-9835
        • Jiang D.
        • Correa-Gallegos D.
        • Christ S.
        • Stefanska A.
        • Liu J.
        • Ramesh P.
        • et al.
        Two succeeding fibroblastic lineages drive dermal development and the transition from regeneration to scarring.
        Nat Cell Biol. 2018; 20: 422-431
        • Kasza I.
        • Suh Y.
        • Wollny D.
        • Clark R.J.
        • Roopra A.
        • Colman R.J.
        • et al.
        Syndecan-1 is required to maintain intradermal fat and prevent cold stress.
        PLoS Genet. 2014; 10e1004514
        • Kimmel R.A.
        • Turnbull D.H.
        • Blanquet V.
        • Wurst W.
        • Loomis C.A.
        • Joyner A.L.
        • et al.
        Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation.
        Genes & Development. 2000; 14: 1377-1389
        • Kumar V.
        • Fleming T.
        • Terjung S.
        • Gorzelanny C.
        • Gebhardt C.
        • Agrawal R.
        • et al.
        Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair.
        Nucleic Acids Research. 2017; 45: 10595-10613
        • Lafyatis R.
        • Mantero J.C.
        • Gordon J.
        • Kishore N.
        • Carns M.
        • Dittrich H.
        • et al.
        Inhibition of β-Catenin Signaling in the Skin Rescues Cutaneous Adipogenesis in Systemic Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Trial of C-82.
        Journal of Investigative Dermatology. 2017; 137: 2473-2483
        • Lam A.P.
        • Flozak A.S.
        • Russell S.
        • Wei J.
        • Jain M.
        • Mutlu G.M.
        • et al.
        Nuclear β-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation.
        American Journal of Respiratory Cell and Molecular Biology. 2011; 45: 915-922
      2. Lamers, D, Famulla, S, Wronkowitz, N, Hartwig, S, Lehr, S, Ouwens DM, et al., (2011). Dipeptidyl Peptidase 4 Is a Novel Adipokine Potentially Linking Obesity to the Metabolic Syndrome 60: 1917–1925.

        • Lessard J.
        • Pelletier M.
        • Biertho L.
        • Biron S.
        • Marceau S.
        • Hould F.-S.
        • et al.
        Characterization of Dedifferentiating Human Mature Adipocytes from the Visceral and Subcutaneous Fat Compartments: Fibroblast-Activation Protein Alpha and Dipeptidyl Peptidase 4 as Major Components of Matrix Remodeling.
        PLoS ONE. 2015; 10e0122065
        • Lv Q.
        • Wang J.
        • Xu C.
        • Huang X.
        • Ruan Z.
        • Dai Y.
        Pirfenidone alleviates pulmonary fibrosis in vitro and in vivo through regulating Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways.
        Mol Med. 2020; 26 (49–10)
        • Marangoni R.G.
        • Korman B.D.
        • Wei J.
        • Wood T.A.
        • Graham L.V.
        • Whitfield M.L.
        • et al.
        Myofibroblasts in Murine Cutaneous Fibrosis Originate From Adiponectin-Positive Intradermal Progenitors.
        Arthritis & Rheumatology. 2015; 67: 1062-1073
        • Marcelin G.
        • Ferreira A.
        • Liu Y.
        • Atlan M.
        • Aron-Wisnewsky J.
        • Pelloux V.
        • et al.
        A PDGFRα-Mediated Switch toward CD9high Adipocyte Progenitors Controls Obesity-Induced Adipose Tissue Fibrosis.
        Cell Metab. 2017;
        • Marguet D.
        • Baggio L.
        • Kobayashi T.
        • Bernard M.
        • Pierres M.
        • Nielsen P.F.
        • et al.
        Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26.
        Proc Natl Acad Sci USA. 2000; 97: 6874-6879
        • Mascharak S.
        • desJardins-Park H.E.
        • Davitt M.F.
        • Griffin M.
        • Borrelli M.R.
        • Moore A.L.
        • et al.
        Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring.
        Science. 2021; 372
        • Mastrogiannaki M.
        • Lichtenberger B.M.
        • Reimer A.
        • Collins C.A.
        • Driskell R.R.
        • Watt F.M.
        β-Catenin stabilization in skin fibroblasts causes fibrotic lesions by preventing adipocyte differentiation of the reticular dermis.
        J Invest Dermatol. 2016; 136: 1130-1142
      3. Merrick, D, Sakers, A, Irgebay, Z, Okada, C, Calvert, C, Morley MP, et al., (2019). Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364: eaav2501–13.

        • Morin P.J.
        • Sparks A.B.
        • Korinek V.
        • Barker N.
        • Clevers H.
        • et al.
        Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-Catenin or APC.
        Science. 1997; 275: 1787-1790
        • Mukherjee A.
        • Soyal S.M.
        • Li J.
        • Ying Y.
        • Szwarc M.M.
        • He B.
        • et al.
        A mouse transgenic approach to induce β-catenin signaling in a temporally controlled manner.
        Transgenic Res. 2010; 20: 827-840
        • Mullin N.K.
        • Mallipeddi N.V.
        • Hamburg-Shields E.
        • Ibarra B.
        • Khalil A.
        • Atit R.P.
        Wnt/β-catenin Signaling Pathway Regulates Specific lncRNAs That Impact Dermal Fibroblasts and Skin Fibrosis.
        Front Genet. 2017; 8: 183
        • Mulvihill E.E.
        • Drucker D.J.
        Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors.
        Endocr Rev. 2014; 35: 992-1019
        • Nicu C.
        • Hardman J.A.
        • Pople J.
        • Paus R.
        Do human dermal adipocytes switch from lipogenesis in anagen to lipophagy and lipolysis during catagen in the human hair cycle?.
        Exp Dermatol. 2019; 28: 432-435
        • Olson L.E.
        • Soriano P.
        Increased PDGFRalpha activation disrupts connective tissue development and drives systemic fibrosis.
        Dev Cell. 2009; 16: 303-313
        • Piersma B.
        • Bank R.A.
        • Boersema M.
        Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge.
        Front Med (Lausanne). 2015; 2: 59
        • Rehan V.K.
        • Torday J.S.
        The lung alveolar lipofibroblast: an evolutionary strategy against neonatal hyperoxic lung injury.
        Antioxidants & redox signaling. 2014; 21: 1893-1904
      4. Rinkevich, Y, Walmsley, GG, Hu, MS, Maan, ZN, Newman, AM, Drukker, M, et al., (2015). Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348: aaa2151–1.

        • Rivera-Gonzalez G.C.
        • Shook B.A.
        • Andrae J.
        • Holtrup B.
        • Bollag K.
        • Betsholtz C.
        • et al.
        Skin Adipocyte Stem Cell Self-Renewal Is Regulated by a PDGFA/AKT-Signaling Axis.
        Cell Stem Cell. 2016; 19: 738-751
        • Rohrborn D.
        • Brückner J.
        • Sell H.
        • Eckel J.
        Reduced DPP4 activity improves insulin signaling in primary human adipocytes.
        Biochem Biophys Res Commun. 2016; 471: 348-354
        • Rosmaninho-Salgado J.
        • Marques A.P.
        • Estrada M.
        • Santana M.
        • Cortez V.
        • Grouzmann E.
        • et al.
        Dipeptidyl-peptidase-IV by cleaving neuropeptide Y induces lipid accumulation and PPAR-γ expression.
        Peptides. 2012; 37: 49-54
        • Schmidt B.A.
        • Horsley V.
        Intradermal adipocytes mediate fibroblast recruitment during skin wound healing.
        Development. 2013; 140: 1517-1527
        • Shi S.
        • Koya D.
        • Kanasaki K.
        Dipeptidyl peptidase-4 and kidney fibrosis in diabetes.
        Fibrogenesis Tissue Repair. 2016; 9: 1249
        • Shook B.A.
        • Wasko R.R.
        • Rivera-Gonzalez G.C.
        • Salazar-Gatzimas E.
        • López-Giráldez F.
        • Dash B.C.
        • et al.
        Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair.
        Science. 2018; 362eaar2971
        • Soare A.
        • Györfi H.A.
        • Matei A.E.
        • Dees C.
        • Rauber S.
        • Wohlfahrt T.
        • et al.
        Dipeptidylpeptidase 4 as a Marker of Activated Fibroblasts and a Potential Target for the Treatment of Fibrosis in Systemic Sclerosis.
        Arthritis Rheumatol. 2020; 72: 137-149
        • Surendran K.
        • Schiavi S.
        • Hruska K.A.
        Wnt-dependent beta-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis.
        J Am Soc Nephrol. 2005; 16: 2373-2384
        • Suwanai H.
        • Watanabe R.
        • Sato M.
        • Odawara M.
        • Matsumura H.
        Dipeptidyl Peptidase-4 Inhibitor reduces the risk of developing hypertrophic scars and keloids following median sternotomy in diabetic patients: A nationwide retrospective cohort study using the national database of health insurance claims of Japan.
        Plast Reconstr Surg. 2020; 146: 83-89
        • Tabib T.
        • Morse C.
        • Wang T.
        • Chen W.
        • Lafyatis R.
        SFRP2/DPP4 and FMO1/LSP1 Define Major Fibroblast Populations in Human Skin.
        J Invest Dermatol. 2018; 138: 802-810
        • Wang X.M.
        • Holz L.E.
        • Chowdhury S.
        • Cordoba S.P.
        • Evans K.A.
        • Gall M.G.
        • et al.
        The pro-fibrotic role of dipeptidyl peptidase 4 in carbon tetrachloride-induced experimental liver injury.
        Immunol Cell Biol. 2017; 95: 443-453
        • Wei J.
        • Fang F.
        • Lam A.P.
        • Sargent J.L.
        • Hamburg E.
        • Hinchcliff M.E.
        • et al.
        Wnt/β-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells.
        Arthritis Rheum. 2012; 64: 2734-2745
        • Wollina U.
        • Wetzker R.
        • Abdel-Naser M.B.
        • Kruglikov I.L.
        Role of adipose tissue in facial aging.
        Clin Interv Aging. 2017; 12: 2069-2076
        • Zhang L.
        • Shen Z.-Y.
        • Wang K.
        • Li W.
        • Shi J.-M.
        • Kombo E.
        • et al.
        C-reactive protein exacerbates epithelial-mesenchymal transition through Wnt/β-catenin and ERK signaling in streptozocin-induced diabetic nephropathy.
        FASEB J. 2019; 33: 6551-6563
        • Zhang L.-J.
        • Guerrero-Juarez C.F.
        • Hata T.
        • Bapat S.P.
        • Ramos R.
        • Plikus M.V.
        • et al.
        Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection.
        Science. 2015; 347: 67-71
        • Zhang Z.
        • Shao M.
        • Hepler C.
        • Zi Z.
        • Zhao S.
        • An Y.A.
        • et al.
        Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice.
        J Clin Invest. 2019; 129: 5327-5342
        • Zhao X.
        • Kwan J.Y.Y.
        • Yip K.
        • Liu P.P.
        • Liu F.-F.
        Targeting metabolic dysregulation for fibrosis therapy.
        Nat Rev Drug Discov. 2020; 19: 57-75