Goat Milk–Derived Lipids Restrain NK T Cell–Dependent Eosinophilic Inflammation in a Murine Model of Atopic Dermatitis

TO THE EDITOR

Atopic dermatitis (AD) is a debilitating disease that disproportionately affects infants and young children and is considered the first step of the atopic march—the age-related progression of allergic disease. Consequently, there is an urgent need to elucidate the root causes of AD and evaluate potential prevention mechanisms.

Anecdotal evidence suggests that cow milk avoidance and substitution with other mammalian milk sources, such as goat milk (GM), has the potential to ameliorate AD symptoms. However, it remains unclear to what extent underlying cow milk allergy may have confounded these observations. In this study, we assessed the therapeutic benefit of GM in AD in the absence of cow milk avoidance and substitution.

To determine whether the consumption of GM infant formula (GMF) can decrease AD disease severity, we used a previously described MC903-driven model of AD-like disease (Li et al., 2009, 2006; Naidoo et al., 2021, 2018). All strains of mice were housed under specific pathogen-free condition at the Malaghan Institute of Medical Research (Wellington, New Zealand). All experimental procedures were approved by the Victoria University of Wellington Animal Ethics Committee and performed according to institutional guidelines. Because milk-derived lipids have been previously shown to bind CD1d and modulate NKT-cell activity (Brennan et al., 2017), we hypothesized that the potential therapeutic activity of GMF may be at least partly mediated by CD1d/NKT cells. Thus, both wild-type C57Bl/6 and NK T–deficient Cd1d−/− mice were supplemented daily with GMF for a week before and during the 19 day–long MC903 AD model (Figure 1a). Mucosal-associated invariant T cell–deficient Mr1−/− mice served as positive controls for therapeutic activity, as recently described (Naidoo et al., 2021), as well as negative controls for the abrogation of any lipid-mediated disease reduction.

Interestingly, in the absence of GMF supplementation, Cd1d−/− and Mr1−/− mice showed comparably reduced ear thickening and skin barrier dysfunction (as assessed by transepidermal water loss), indicating that both mucosal-associated invariant T and NK T cells promote disease progression in this model of AD (Figure 1b and c). Daily administration of GMF also exhibited therapeutic activity, leading to significant reductions of ear thickness in wild-type and Mr1−/− mice, but as hypothesized, provided no further benefit to Cd1d−/− mice. Next, we compared GMF with two other GM products with contrasting lipid contents, that is, reconstituted whole-GM powder (29.5% milk fat in dry matter) and skim GM powder (1% milk fat in dry matter). Consistent with a lipid-mediated mode of action, GMF (26% total fat, 13% milk fat in dry matter) and whole-GM powder had a similar effect on disease progression, whereas skim GM powder had no detectable activity (Figure 1d).

Because the role of NK T cells in the context of AD remains to be elucidated, we sought to provide a tentative mechanism whereby NK T cells contribute to disease progression—a mechanism that could ultimately be modulated through dietary lipids. We previously reported the eosinophil dependence of MC903-driven AD (Naidoo et al., 2018) and, using the same model, have more recently described the function of mucosal-associated invariant T cells as cellular checkpoints for eosinophil activation in situ (Naidoo et al., 2021). Because we comparatively quantified eosinophilia in wild-type, Mr1−/−, and Cd1d−/− ears, it became apparent that the significant reductions in ear thickness (Figure 1b) and transepidermal water loss (Figure 1c) observed in Mr1−/− and Cd1d−/− mice reflected distinct mechanistic pathways. Indeed, although mucosal-associated invariant T cells exclusively control eosinophil activation (Figure 1g and h) (Naidoo et al.,...
Goat Milk Lipids Regulate NKT Cell Pathogenicity in AD

Figure 1. Goat milk–derived lipids modulate NKT–eosinophil axis in atopic dermatitis. (a) Treatment scheme. Male and female mice were used between ages 6 and 14 weeks. Milk products (GMF, WMP, SMP) were reconstituted in water at the concentration used for human consumption (14.6 g/100 ml) and fed either by gavage or provided ad libitum, which yielded similar results. At the experimental endpoint, ear thickness, TEWL, and eosinophil quantification by confocal microscopy and flow cytometry were performed as previously described (Naidoo et al., 2021). (b) Effect of GMF on ear thickness on day 19 of MC903 treatment. (c) Comparative skin barrier dysfunction, as measured by TEWL, of WT, Mr1−/−, and Cd1−/− mice treated with MC903. (d, e) Ear thickness on day 19 of MC903 treatment, after daily administration of GMF, WMP, or SMP. (f) NKT-cell antigenic activity of GMF (146 mg/ml) and the NKT-cell agonist α-GalCer (in ng per well), as assessed by IL-2 quantification in the supernatants of 10⁵ mouse NKT hybridoma cells (DN32.D3) after 24 h incubation. (g) Confocal imaging of Siglec-
The recruitment of eosinophils seems in turn to largely rely on NKT cells, in an eotaxin-independent manner (Figure 1i). Eosinophil recruitment was also responsive to dietary GM intervention, in a milk fat–dependent manner (Figure 1j). However, the ability of whole-GM powder to thwart eosinophil recruitment did not fully match its effect on ear thickness (Figure 1j).

Together, these results suggest that consumption of full-fat GM products can have a beneficial effect on AD disease severity, possibly by restraining iNKT cell–dependent eosinophilia. Because topical administration of MC903 drives AD-like skin inflammation in a thymic stromal lymphopoietin–dependent and –obligate manner, it is tempting to speculate that MC903 exerts its activity, at least partly, through thymic stromal lymphopoietin–mediated NKT-cell activation (Nagata et al., 2007; Ziegler and Artis, 2010) and subsequent NKT cell–dependent eosinophil recruitment, as observed in this study. However, because the MC903 AD–like model is conducted in the absence of allergen, the therapeutic effect of dietary NKT-cell modulation in disease settings comprising allergen-specific T helper 2 cells and/or additional alarmins (e.g., IL-33) remains to be determined. Finally, further research is warranted to appropriately compare GM with cow and human milk and determine the interspecies variations in milk-derived NKT cell modulators.

Data availability statement
All data underlying the results are available as part of the article.

ORCID
Katherine Woods: http://orcid.org/0000-0003-3474-3104
Alissa Cait: http://orcid.org/0000-0001-5720-327X
Katie Gell: http://orcid.org/0000-0003-4662-7194
Karmella Naidoo: http://orcid.org/0000-0002-2505-5222
Caitlin Brown: http://orcid.org/0000-0003-3030-7209
Elizabeth Carpenter: http://orcid.org/0000-0002-3056-3336
Olivier Gasser: http://orcid.org/0000-0002-8235-2274

ACKNOWLEDGMENTS
This work was supported by Research for Life (Wellington Medical Research Foundation), Dairy Goat Co-Operative (Hamilton, New Zealand), and the New Zealand Ministry for Primary Industries as part of the Caprine Innovations New Zealand Sustainable Food and Fibre Futures program, the High-Value Nutrition National Science Challenge, the New Zealand Health Research Council of New Zealand Independent Organization Fund (14/1003), and the Dines Family Charitable Trust (Auckland, New Zealand). The manufacturing of α-galactosylceramide was carried out by Prof. Painter’s laboratory, financially supported by a program grant from the New Zealand Ministry of Business Innovation and Employment (award number RTVU1603). We are grateful to Hermans for generously providing us with the Jα18+/− mice as well as the NK T-cell hybridoma cell line, the staff of the Hugh Green Cytometry Core and Biomedical Research Unit at the Malaghan Institute of Medical Research (Wellington, New Zealand) for expert support with flow cytometry and animal husbandry, and all colleagues at the Malaghan Institute of Medical Research for insightful discussion and advice.

AUTHOR CONTRIBUTIONS
Conceptualization: EC, OG; Data Curation: KW, AC, KG, KN, CB; Writing - Original Draft Preparation: OG; Writing - Review and Editing: KW, AC, KG, KN, CB, EC

CONFLICT OF INTEREST
This work was partly funded by Dairy Goat Co-Operative. EC is an employee of Dairy Goat Co-Operative.

Katherine Woods1,4, Alissa Cait1,4, Katie Gell1, Karmella Naidoo1, Caitlin Brown4, Elizabeth Carpenter2 and Olivier Gasser1,3,*
1Malaghan Institute of Medical Research, Wellington, New Zealand; 2Dairy Goat Co-Operative, Hamilton, New Zealand; and 3High-Value Nutrition National Science Challenge, Auckland, New Zealand
4These authors contributed equally to this work.

REFERENCES

This work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

F* eosinophils (green). Bar = 50 μm. (i) Associated eosinophil counts per HPF. (j) In situ eotaxin concentrations for WT, Mr1−/−, and Cd1d−/− mice. (k) Comparative ear thickness (solid circles, left y-axis) and eosinophilia (open circles, right y-axis) in WMP- and SMP-supplemented WT mice. Plots show individual data points and their means. Data are representative of up to three independent experiments. Statistics were calculated using one-way ANOVA with Tukey post hoc test. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. α-GalCer, α-galactosylceramide; ctrl, control; GMF, goat milk infant formula; h, hour; HPF, high-powered field; NKT, NK T; n.s., nonsignificant; SMP, skim goat milk powder; TEWL, transepidermal water loss; WMP, whole goat milk powder; WT, wild type.