Advertisement

Kinase Inhibition by PKC412 Prevents Epithelial Sheet Damage in Autosomal Dominant Epidermolysis Bullosa Simplex through Keratin and Cell Contact Stabilization

      Epidermolysis bullosa simplex (EBS) is a severe and potentially life-threatening disorder for which no adequate therapy exists. Most cases are caused by dominant sequence variations in keratin genes K5 or K14, leading to the formation of cytoplasmic keratin aggregates, profound keratinocyte fragility, and cytolysis. We hypothesized that pharmacological reduction of keratin aggregates, which compromise keratinocyte integrity, represents a viable strategy for the treatment of EBS. In this study, we show that the multikinase inhibitor PKC412, which is currently in clinical use for acute myeloid leukemia and advanced systemic mastocytosis, reduced keratin aggregation by 40% in patient-derived K14.R125C EBS-associated keratinocytes. Using a combination of epithelial shear stress assay and real-time impedance spectroscopy, we show that PKC412 restored intercellular adhesion. Molecularly, global phosphoproteomic analysis together with immunoblots using phosphoepitope-specific antibodies revealed that PKC412 treatment altered phosphorylated sites on keratins and desmoplakin. Thus, our data provide a proof of concept to repurpose existing drugs for the targeted treatment of EBS and showcase how one broad-range kinase inhibitor reduced keratin filament aggregation in patient-derived EBS keratinocytes and the fragility of EBS cell monolayers. Our study paves the way for a clinical trial using PKC412 for systemic or local application in patients with EBS.

      Graphical abstract

      Abbreviations:

      EBS (epidermolysis bullosa simplex), EBS-S (severe epidermolysis bullosa simplex), DSP (desmoplakin), K (keratin), KC (keratinocyte), KF (keratin filament), NHK (normal human keratinocyte), PKC (protein kinase C)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'
      Society Members (SID/ESDR), remember to log in for access.

      Subscribe:

      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Altıner Ş.
        • Hekimoğlu B.
        • Livaoğlu A.
        • Has C.
        Severe skin fragility with postnatal lethal outcome due to a biallelic KRT5 mutation.
        J Dtsch Dermatol Ges. 2021; 19: 440-442
        • Bardhan A.
        • Bruckner-Tuderman L.
        • Chapple I.L.C.
        • Fine J.D.
        • Harper N.
        • Has C.
        • et al.
        Epidermolysis bullosa.
        Nat Rev Dis Primers. 2020; 6: 78
        • Castela E.
        • Tulic M.K.
        • Rozières A.
        • Bourrat E.
        • Nicolas J.F.
        • Kanitakis J.
        • et al.
        Epidermolysis bullosa simplex generalized severe induces a T helper 17 response and is improved by apremilast treatment.
        Br J Dermatol. 2019; 180: 357-364
        • Coulombe P.A.
        • Lee C.H.
        Defining keratin protein function in skin epithelia: epidermolysis bullosa simplex and its aftermath.
        J Invest Dermatol. 2012; 132: 763-775
        • Dehner C.
        • Rötzer V.
        • Waschke J.
        • Spindler V.
        A desmoplakin point mutation with enhanced keratin association ameliorates pemphigus vulgaris autoantibody-mediated loss of cell cohesion.
        Am J Pathol. 2014; 184: 2528-2536
        • Evtushenko N.A.
        • Beilin A.K.
        • Kosykh A.V.
        • Vorotelyak E.A.
        • Gurskaya N.G.
        Keratins as an inflammation trigger point in epidermolysis bullosa simplex.
        Int J Mol Sci. 2021; 2212446
        • Feng X.
        • Coulombe P.A.
        Complementary roles of specific cysteines in keratin 14 toward the assembly, organization, and dynamics of intermediate filaments in skin keratinocytes.
        J Biol Chem. 2015; 290: 22507-22519
        • Fine J.D.
        • Johnson L.
        • Wright T.
        • Horiguchi Y.
        Epidermolysis bullosa simplex: identification of a kindred with autosomal recessive transmission of the Weber-Cockayne variety.
        Pediatr Dermatol. 1989; 6: 1-5
        • Has C.
        • Bauer J.W.
        • Bodemer C.
        • Bolling M.C.
        • Bruckner-Tuderman L.
        • Diem A.
        • et al.
        Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility.
        Br J Dermatol. 2020; 183: 614-627
        • Has C.
        • Küsel J.
        • Reimer A.
        • Hoffmann J.
        • Schauer F.
        • Zimmer A.
        • et al.
        The position of targeted next-generation sequencing in epidermolysis bullosa diagnosis.
        Acta Derm Venereol. 2018; 98: 437-440
        • He H.
        • Tran P.
        • Gu H.
        • Tedesco V.
        • Zhang J.
        • Lin W.
        • et al.
        Midostaurin, a novel protein kinase inhibitor for the treatment of acute myelogenous leukemia: insights from human absorption, metabolism, and excretion studies of a BDDCS II drug.
        Drug Metab Dispos. 2017; 45: 540-555
        • He Y.
        • Maier K.
        • Leppert J.
        • Hausser I.
        • Schwieger-Briel A.
        • Weibel L.
        • et al.
        Monoallelic mutations in the translation initiation codon of KLHL24 cause skin fragility.
        Am J Hum Genet. 2016; 99: 1395-1404
        • Hobbs R.P.
        • Green K.J.
        Desmoplakin regulates desmosome hyperadhesion.
        J Invest Dermatol. 2012; 132: 482-485
        • Homberg M.
        • Magin T.M.
        Beyond expectations: novel insights into epidermal keratin function and regulation.
        Int Rev Cell Mol Biol. 2014; 311: 265-306
        • Homberg M.
        • Ramms L.
        • Schwarz N.
        • Dreissen G.
        • Leube R.E.
        • Merkel R.
        • et al.
        Distinct impact of two keratin mutations causing epidermolysis bullosa simplex on keratinocyte adhesion and stiffness.
        J Invest Dermatol. 2015; 135 ([published correction appears in J Invest Dermatol 2016;136:1306]): 2437-2445
        • Horn H.M.
        • Tidman M.J.
        The clinical spectrum of epidermolysis bullosa simplex.
        Br J Dermatol. 2000; 142: 468-472
        • Hovnanian A.
        • Pollack E.
        • Hilal L.
        • Rochat A.
        • Prost C.
        • Barrandon Y.
        • et al.
        A missense mutation in the rod domain of keratin 14 associated with recessive epidermolysis bullosa simplex.
        Nat Genet. 1993; 3: 327-332
        • Humphries M.M.
        • Sheils D.
        • Lawler M.
        • Farrar G.J.
        • McWilliam P.
        • Kenna P.
        • et al.
        Epidermolysis bullosa: evidence for linkage to genetic markers on chromosome 1 in a family with the autosomal dominant simplex form.
        Genomics. 1990; 7: 377-381
        • Imami K.
        • Sugiyama N.
        • Imamura H.
        • Wakabayashi M.
        • Tomita M.
        • Taniguchi M.
        • et al.
        Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways.
        Mol Cell Proteomics. 2012; 11: 1741-1757
        • Inaba H.
        • Yamakawa D.
        • Tomono Y.
        • Enomoto A.
        • Mii S.
        • Kasahara K.
        • et al.
        Regulation of keratin 5/14 intermediate filaments by CDK1, aurora-B, and Rho-kinase.
        Biochem Biophys Res Commun. 2018; 498: 544-550
        • Jahnke H.G.
        • Schmidt S.
        • Frank R.
        • Weigel W.
        • Prönnecke C.
        • Robitzki A.A.
        FEM-based design of optical transparent indium tin oxide multielectrode arrays for multiparametric, high sensitive cell based assays.
        Biosens Bioelectron. 2019; 129: 208-215
        • Kimura T.E.
        • Merritt A.J.
        • Garrod D.R.
        Calcium-independent desmosomes of keratinocytes are hyper-adhesive.
        J Invest Dermatol. 2007; 127: 775-781
        • Kocher T.
        • Peking P.
        • Klausegger A.
        • Murauer E.M.
        • Hofbauer J.P.
        • Wally V.
        • et al.
        Cut and paste: efficient homology-directed repair of a dominant negative KRT14 mutation via CRISPR/Cas9 nickases.
        Mol Ther. 2017; 25: 2585-2598
        • Kowalczyk A.P.
        • Bornslaeger E.A.
        • Borgwardt J.E.
        • Palka H.L.
        • Dhaliwal A.S.
        • Corcoran C.M.
        • et al.
        The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes.
        J Cell Biol. 1997; 139: 773-784
        • Kowalczyk A.P.
        • Hatzfeld M.
        • Bornslaeger E.A.
        • Kopp D.S.
        • Borgwardt J.E.
        • Corcoran C.M.
        • et al.
        The head domain of plakophilin-1 binds to desmoplakin and enhances its recruitment to desmosomes. Implications for cutaneous disease.
        J Biol Chem. 1999; 274: 18145-18148
        • Ku N.O.
        • Omary M.B.
        A disease- and phosphorylation-related nonmechanical function for keratin 8.
        J Cell Biol. 2006; 174: 115-125
        • Ku N.O.
        • Toivola D.M.
        • Strnad P.
        • Omary M.B.
        Cytoskeletal keratin glycosylation protects epithelial tissue from injury.
        Nat Cell Biol. 2010; 12: 876-885
        • Kwan R.
        • Chen L.
        • Looi K.
        • Tao G.Z.
        • Weerasinghe S.V.
        • Snider N.T.
        • et al.
        PKC412 normalizes mutation-related keratin filament disruption and hepatic injury in mice by promoting keratin-myosin binding.
        Hepatology. 2015; 62: 1858-1869
        • Lalor L.
        • Titeux M.
        • Palisson F.
        • Fuentes I.
        • Yubero M.J.
        • Tasanen K.
        • et al.
        Epidermolysis bullosa simplex-generalized severe type due to keratin 5 p.Glu477Lys mutation: genotype-phenotype correlation and in silico modeling analysis.
        Pediatr Dermatol. 2019; 36: 132-138
        • Lee G.H.
        • Lekwuttikarn R.
        • Tafoya E.
        • Martin M.
        • Sarin K.Y.
        • Teng J.M.
        Transcriptomic repositioning analysis identifies mTOR inhibitor as potential therapy for epidermolysis bullosa simplex.
        J Invest Dermatol. 2022; 142: 382-389
        • Limmer A.L.
        • Nwannunu C.E.
        • Shah R.
        • Coleman K.
        • Patel R.R.
        • Mui U.N.
        • et al.
        Topical diacerein ointment for epidermolysis bullosa simplex: a review.
        Skin Therapy Lett. 2019; 24: 7-9
        • Lin E.W.
        • Brady G.F.
        • Kwan R.
        • Nesvizhskii A.I.
        • Omary M.B.
        Genotype-phenotype analysis of LMNA-related diseases predicts phenotype-selective alterations in lamin phosphorylation.
        FASEB J. 2020; 34: 9051-9073
        • McKenna K.E.
        • Hughes A.E.
        • Bingham E.A.
        • Nevin N.C.
        Linkage of epidermolysis bullosa simplex to keratin gene loci.
        J Med Genet. 1992; 29: 568-570
        • Meng J.J.
        • Bornslaeger E.A.
        • Green K.J.
        • Steinert P.M.
        • Ip W.
        Two-hybrid analysis reveals fundamental differences in direct interactions between desmoplakin and cell type-specific intermediate filaments.
        J Biol Chem. 1997; 272: 21495-21503
        • Mulley J.C.
        • Nicholls C.M.
        • Propert D.N.
        • Turner T.
        • Sutherland G.R.
        Genetic linkage analysis of epidermolysis bullosa simplex, Kobner type.
        Am J Med Genet. 1984; 19: 573-577
        • Omary M.B.
        • Ku N.O.
        • Tao G.Z.
        • Toivola D.M.
        • Liao J.
        “Heads and tails” of intermediate filament phosphorylation: multiple sites and functional insights.
        Trends Biochem Sci. 2006; 31: 383-394
        • Pan X.
        • Kane L.A.
        • Van Eyk J.E.
        • Coulombe P.A.
        Type I keratin 17 protein is phosphorylated on serine 44 by p90 ribosomal protein S6 kinase 1 (RSK1) in a growth- and stress-dependent fashion.
        J Biol Chem. 2011; 286: 42403-42413
        • Propper D.J.
        • McDonald A.C.
        • Man A.
        • Thavasu P.
        • Balkwill F.
        • Braybrooke J.P.
        • et al.
        Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C.
        J Clin Oncol. 2001; 19: 1485-1492
        • Reimer-Taschenbrecker A.
        • Hess M.
        • Hotz A.
        • Fischer J.
        • Bruckner-Tuderman L.
        • Has C.
        Plantar involvement correlates with obesity, pain and impaired mobility in epidermolysis bullosa simplex: a retrospective cohort study.
        J Eur Acad Dermatol Venereol. 2021; 35: 2097-2104
        • Russell D.
        • Andrews P.D.
        • James J.
        • Lane E.B.
        Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes.
        J Cell Sci. 2004; 117: 5233-5243
        • Russell D.
        • Ross H.
        • Lane E.B.
        ERK involvement in resistance to apoptosis in keratinocytes with mutant keratin.
        J Invest Dermatol. 2010; 130: 671-681
        • Sathishkumar D.
        • Orrin E.
        • Terron-Kwiatkowski A.
        • Browne F.
        • Martinez A.E.
        • Mellerio J.E.
        • et al.
        The p.Glu477Lys mutation in keratin 5 is strongly associated with mortality in generalized severe epidermolysis bullosa simplex.
        J Invest Dermatol. 2016; 136: 719-721
        • Sawant M.
        • Schwarz N.
        • Windoffer R.
        • Magin T.M.
        • Krieger J.
        • Mücke N.
        • et al.
        Threonine 150 phosphorylation of keratin 5 is linked to epidermolysis bullosa simplex and regulates filament assembly and cell viability.
        J Invest Dermatol. 2018; 138: 627-636
        • Snider N.T.
        • Omary M.B.
        Post-translational modifications of intermediate filament proteins: mechanisms and functions.
        Nat Rev Mol Cell Biol. 2014; 15: 163-177
        • Snider N.T.
        • Weerasinghe S.V.
        • Iñiguez-Lluhí J.A.
        • Herrmann H.
        • Omary M.B.
        Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation.
        J Biol Chem. 2011; 286: 2273-2284
        • Spörrer M.
        • Prochnicki A.
        • Tölle R.C.
        • Nyström A.
        • Esser P.R.
        • Homberg M.
        • et al.
        Treatment of keratinocytes with 4-phenylbutyrate in epidermolysis bullosa: lessons for therapies in keratin disorders.
        EBiomedicine. 2019; 44: 502-515
        • Srikanth B.
        • Vaidya M.M.
        • Kalraiya R.D.
        O-GlcNAcylation determines the solubility, filament organization, and stability of keratins 8 and 18.
        J Biol Chem. 2010; 285: 34062-34071
        • Steinert P.
        • Idler W.
        • Aynardi-Whitman M.
        • Zackroff R.
        • Goldman R.D.
        Heterogeneity of intermediate filaments assembled in vitro.
        Cold Spring Harb Symp Quant Biol. 1982; 46: 465-474
        • Steinert P.M.
        Structure of the three-chain unit of the bovine epidermal keratin filament.
        J Mol Biol. 1978; 123: 49-70
        • Steinert P.M.
        The dynamic phosphorylation of the human intermediate filament keratin 1 chain.
        J Biol Chem. 1988; 263: 13333-13339
        • Steinert P.M.
        • Parry D.A.
        • Idler W.W.
        • Johnson L.D.
        • Steven A.C.
        • Roop D.R.
        Amino acid sequences of mouse and human epidermal type II keratins of Mr 67,000 provide a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits.
        J Biol Chem. 1985; 260: 7142-7149
        • Stone R.M.
        • Fischer T.
        • Paquette R.
        • Schiller G.
        • Schiffer C.A.
        • Ehninger G.
        • et al.
        Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia.
        Leukemia. 2012; 26: 2061-2068
        • Stone R.M.
        • Manley P.W.
        • Larson R.A.
        • Capdeville R.
        Midostaurin: its odyssey from discovery to approval for treating acute myeloid leukemia and advanced systemic mastocytosis.
        Blood Adv. 2018; 2 ([published correction appears in Blood Adv 2018;2:787]): 444-453
        • Sun M.
        • Fu H.
        • Cheng H.
        • Cao Q.
        • Zhao Y.
        • Mou X.
        • et al.
        A dynamic real-time method for monitoring epithelial barrier function in vitro.
        Anal Biochem. 2012; 425: 96-103
        • Szeverenyi I.
        • Cassidy A.J.
        • Chung C.W.
        • Lee B.T.
        • Common J.E.
        • Ogg S.C.
        • et al.
        The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases.
        Hum Mutat. 2008; 29: 351-360
        • Tan T.S.
        • Common J.E.A.
        • Lim J.S.Y.
        • Badowski C.
        • Firdaus M.J.
        • Leonardi S.S.
        • et al.
        A cell-based drug discovery assay identifies inhibition of cell stress responses as a new approach to treatment of epidermolysis bullosa simplex.
        J Cell Sci. 2021; 134: jcs258409
        • Titeux M.
        • Bonnet des Claustres M.
        • Izmiryan A.
        • Ragot H.
        • Hovnanian A.
        Emerging drugs for the treatment of epidermolysis bullosa.
        Expert Opin Emerg Drugs. 2020; 25: 467-489
        • Toivola D.M.
        • Strnad P.
        • Habtezion A.
        • Omary M.B.
        Intermediate filaments take the heat as stress proteins.
        Trends Cell Biol. 2010; 20: 79-91
        • Toivola D.M.
        • Zhou Q.
        • English L.S.
        • Omary M.B.
        Type II keratins are phosphorylated on a unique motif during stress and mitosis in tissues and cultured cells.
        Mol Biol Cell. 2002; 13: 1857-1870
        • Vahidnezhad H.
        • Youssefian L.
        • Daneshpazhooh M.
        • Mahmoudi H.
        • Kariminejad A.
        • Fischer J.
        • et al.
        Biallelic KRT5 mutations in autosomal recessive epidermolysis bullosa simplex, including a complete human keratin 5 “knock-out”.
        Matrix Biol. 2019; 83: 48-59
        • Wallis S.
        • Lloyd S.
        • Wise I.
        • Ireland G.
        • Fleming T.P.
        • Garrod D.
        The alpha isoform of protein kinase C is involved in signaling the response of desmosomes to wounding in cultured epithelial cells.
        Mol Biol Cell. 2000; 11: 1077-1092
        • Wally V.
        • Hovnanian A.
        • Ly J.
        • Buckova H.
        • Brunner V.
        • Lettner T.
        • et al.
        Diacerein orphan drug development for epidermolysis bullosa simplex: A phase 2/3 randomized, placebo-controlled, double-blind clinical trial.
        J Am Acad Dermatol. 2018; 78: 892-901.e7
        • Wally V.
        • Lettner T.
        • Peking P.
        • Peckl-Schmid D.
        • Murauer E.M.
        • Hainzl S.
        • et al.
        The pathogenetic role of IL-1β in severe epidermolysis bullosa simplex.
        J Invest Dermatol. 2013; 133: 1901-1903
        • Wegener J.
        • Seebach J.
        Experimental tools to monitor the dynamics of endothelial barrier function: a survey of in vitro approaches.
        Cell Tissue Res. 2014; 355: 485-514
        • Werner N.S.
        • Windoffer R.
        • Strnad P.
        • Grund C.
        • Leube R.E.
        • Magin T.M.
        Epidermolysis bullosa simplex-type mutations alter the dynamics of the keratin cytoskeleton and reveal a contribution of actin to the transport of keratin subunits.
        Mol Biol Cell. 2004; 15: 990-1002
        • Wilson A.K.
        • Coulombe P.A.
        • Fuchs E.
        The roles of K5 and K14 head, tail, and R/K L L E G E domains in keratin filament assembly in vitro.
        J Cell Biol. 1992; 119: 401-414