Advertisement

Regulatory T Cells Require CCR6 for Skin Migration and Local Suppression of Vitiligo

      Vitiligo is an autoimmune skin disease caused by melanocyte-targeting autoreactive CD8+ T cells. Regulatory T cells (Tregs) have been implicated in restraining vitiligo severity in both mouse models and human patients; however, whether they must be present in the skin for their suppressive function is still unclear. We observed uneven distribution of Tregs within different anatomical locations of mouse skin, which correlated with reduced depigmentation after vitiligo induction. We specifically depleted Tregs in our mouse model of vitiligo and observed increased disease. Next, we found that Tregs contact CD8+ T effector cells in vitiligo lesional skin and that Treg recruitment to the skin inversely correlated with disease severity, suggesting a critical role for Treg suppression within the skin. When we investigated the signals facilitating Treg migration to the skin, we found that although CXCR3 was dispensable for Treg migration and function in vitiligo, Tregs lacking CCR6 exhibited a reduced capacity to migrate to the skin and suppress depigmentation, despite normal systemic numbers in the skin-draining lymph nodes. Our observations highlight a key role for cutaneous Tregs in disease suppression during vitiligo and identify CCR6 as a chemokine receptor that contributes to Treg migration to the skin.

      Abbreviations:

      DTX (diphtheria toxin), SDLN (skin-draining lymph node), Teff (T effector cell), Treg (regulatory T cell), WT (wild-type)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'
      Society Members (SID/ESDR), remember to log in for access.

      Subscribe:

      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abdallah M.
        • Lotfi R.
        • Othman W.
        • Galal R.
        Assessment of tissue FoxP3+, CD4+ and CD8+ T-cells in active and stable nonsegmental vitiligo.
        Int J Dermatol. 2014; 53: 940-946
        • Annunziato F.
        • Cosmi L.
        • Santarlasci V.
        • Maggi L.
        • Liotta F.
        • Mazzinghi B.
        • et al.
        Phenotypic and functional features of human Th17 cells.
        J Exp Med. 2007; 204: 1849-1861
        • Antony P.A.
        • Piccirillo C.A.
        • Akpinarli A.
        • Finkelstein S.E.
        • Speiss P.J.
        • Surman D.R.
        • et al.
        CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells.
        J Immunol. 2005; 174: 2591-2601
        • Bassiouny D.A.
        • Shaker O.
        Role of interleukin-17 in the pathogenesis of vitiligo.
        Clin Exp Dermatol. 2011; 36: 292-297
        • Ben Ahmed M.
        • Zaraa I.
        • Rekik R.
        • Elbeldi-Ferchiou A.
        • Kourda N.
        • Belhadj Hmida N.
        • et al.
        Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo.
        Pigment Cell Melanoma Res. 2012; 25: 99-109
        • Charbonnier A.S.
        • Kohrgruber N.
        • Kriehuber E.
        • Stingl G.
        • Rot A.
        • Maurer D.
        Macrophage inflammatory protein 3alpha is involved in the constitutive trafficking of epidermal Langerhans cells.
        J Exp Med. 1999; 190: 1755-1768
        • Chatterjee S.
        • Eby J.M.
        • Al-Khami A.A.
        • Soloshchenko M.
        • Kang H.K.
        • Kaur N.
        • et al.
        A quantitative increase in regulatory T cells controls development of vitiligo.
        J Invest Dermatol. 2014; 134: 1285-1294
        • Cretney E.
        • Kallies A.
        • Nutt S.L.
        Differentiation and function of Foxp3(+) effector regulatory T cells.
        Trends Immunol. 2013; 34: 74-80
        • Eby J.M.
        • Kang H.K.
        • Tully S.T.
        • Bindeman W.E.
        • Peiffer D.S.
        • Chatterjee S.
        • et al.
        CCL22 to activate Treg migration and suppress depigmentation in vitiligo.
        J Invest Dermatol. 2015; 135: 1574-1580
        • Ezzedine K.
        • Gauthier Y.
        • Léauté-Labrèze C.
        • Marquez S.
        • Bouchtnei S.
        • Jouary T.
        • et al.
        Segmental vitiligo associated with generalized vitiligo (mixed vitiligo): a retrospective case series of 19 patients.
        J Am Acad Dermatol. 2011; 65: 965-971
        • Frisoli M.L.
        • Essien K.
        • Harris J.E.
        Vitiligo: mechanisms of pathogenesis and treatment.
        Annu Rev Immunol. 2020; 38: 621-648
        • Furue K.
        • Ito T.
        • Tsuji G.
        • Nakahara T.
        • Furue M.
        The CCL20 and CCR6 axis in psoriasis.
        Scand J Immunol. 2020; 91e12846
        • Gellatly K.J.
        • Strassner J.P.
        • Essien K.
        • Refat M.A.
        • Murphy R.L.
        • Coffin-Schmitt A.
        • et al.
        scRNA-seq of human vitiligo reveals complex networks of subclinical immune activation and a role for CCR5 in Treg function.
        Sci Transl Med. 2021; 13eabd8995
        • Giri P.S.
        • Dwivedi M.
        • Laddha N.C.
        • Begum R.
        • Bharti A.H.
        Altered expression of nuclear factor of activated T cells, forkhead box P3, and immune-suppressive genes in regulatory T cells of generalized vitiligo patients.
        Pigment Cell Melanoma Res. 2020; 33: 566-578
        • Gregg R.K.
        • Nichols L.
        • Chen Y.
        • Lu B.
        • Engelhard V.H.
        Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice.
        J Immunol. 2010; 184: 1909-1917
        • Gross A.
        • Tapia F.J.
        • Mosca W.
        • Perez R.M.
        • Briceño L.
        • Henriquez J.J.
        • et al.
        Mononuclear cell subpopulations and infiltrating lymphocytes in erythema dyschromicum perstans and vitiligo.
        Histol Histopathol. 1987; 2: 277-283
        • Han Y.M.
        • Sheng Y.Y.
        • Xu F.
        • Qi S.S.
        • Liu X.J.
        • Hu R.M.
        • et al.
        Imbalance of T-helper 17 and regulatory T cells in patients with alopecia areata.
        J Dermatol. 2015; 42: 981-988
        • Harris J.E.
        • Harris T.H.
        • Weninger W.
        • Wherry E.J.
        • Hunter C.A.
        • Turka L.A.
        A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin.
        J Invest Dermatol. 2012; 132: 1869-1876
        • Hedrick M.N.
        • Lonsdorf A.S.
        • Shirakawa A.K.
        • Richard Lee C.C.R.
        • Liao F.
        • Singh S.P.
        • et al.
        CCR6 is required for IL-23-induced psoriasis-like inflammation in mice.
        J Clin Invest. 2009; 119: 2317-2329
        • Homey B.
        • Dieu-Nosjean M.C.
        • Wiesenborn A.
        • Massacrier C.
        • Pin J.J.
        • Oldham E.
        • et al.
        Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis.
        J Immunol. 2000; 164: 6621-6632
        • Izcue A.
        • Hue S.
        • Buonocore S.
        • Arancibia-Cárcamo C.V.
        • Ahern P.P.
        • Iwakura Y.
        • et al.
        Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis.
        Immunity. 2008; 28: 559-570
        • Jin Y.
        • Andersen G.
        • Yorgov D.
        • Ferrara T.M.
        • Ben S.
        • Brownson K.M.
        • et al.
        Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants.
        Nat Genet. 2016; 48: 1418-1424
        • Kim J.M.
        • Rasmussen J.P.
        • Rudensky A.Y.
        Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice.
        Nat Immunol. 2007; 8: 191-197
        • Kim T.G.
        • Jee H.
        • Fuentes-Duculan J.
        • Wu W.H.
        • Byamba D.
        • Kim D.S.
        • et al.
        Dermal clusters of mature dendritic cells and T cells are associated with the CCL20/CCR6 chemokine system in chronic psoriasis.
        J Invest Dermatol. 2014; 134: 1462-1465
        • Kitamura K.
        • Farber J.M.
        • Kelsall B.L.
        CCR6 marks regulatory T cells as a colon-tropic, IL-10-producing phenotype.
        J Immunol. 2010; 185: 3295-3304
        • Klarquist J.
        • Denman C.J.
        • Hernandez C.
        • Wainwright D.A.
        • Strickland F.M.
        • Overbeck A.
        • et al.
        Reduced skin homing by functional Treg in vitiligo.
        Pigment Cell Melanoma Res. 2010; 23 ([published correction appears in Pigment Cell Melanoma Res 2010;23:477]): 276-286
        • Kleinewietfeld M.
        • Hafler D.A.
        Regulatory T cells in autoimmune neuroinflammation.
        Immunol Rev. 2014; 259: 231-244
        • Lang K.S.
        • Caroli C.C.
        • Muhm A.
        • Wernet D.
        • Moris A.
        • Schittek B.
        • et al.
        HLA-A2 restricted, melanocyte-specific CD8(+) T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MelanA/MART1.
        J Invest Dermatol. 2001; 116: 891-897
        • Lili Y.
        • Yi W.
        • Ji Y.
        • Yue S.
        • Weimin S.
        • Ming L.
        Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo.
        PloS One. 2012; 7e37513
        • McCully M.L.
        • Moser B.
        The human cutaneous chemokine system.
        Front Immunol. 2011; 2: 33
        • Méry-Bossard L.
        • Bagny K.
        • Chaby G.
        • Khemis A.
        • Maccari F.
        • Marotte H.
        • et al.
        New-onset vitiligo and progression of pre-existing vitiligo during treatment with biological agents in chronic inflammatory diseases.
        J Eur Acad Dermatol Venereol. 2017; 31: 181-186
        • Miao X.
        • Xu R.
        • Fan B.
        • Chen J.
        • Li X.
        • Mao W.
        • et al.
        PD-L1 reverses depigmentation in Pmel-1 vitiligo mice by increasing the abundance of Tregs in the skin.
        Sci Rep. 2018; 8: 1605
        • Ogg G.S.
        • Rod Dunbar P.R.
        • Romero P.
        • Chen J.L.
        • Cerundolo V.
        High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo.
        J Exp Med. 1998; 188: 1203-1208
        • Ohl K.
        • Tenbrock K.
        Regulatory T cells in systemic lupus erythematosus.
        Eur J Immunol. 2015; 45: 344-355
        • Rashighi M.
        • Agarwal P.
        • Richmond J.M.
        • Harris T.H.
        • Dresser K.
        • Su M.W.
        • et al.
        CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo.
        Sci Transl Med. 2014; 6: 223ra23
        • Richmond J.M.
        • Masterjohn E.
        • Chu R.
        • Tedstone J.
        • Youd M.E.
        • Harris J.E.
        CXCR3 depleting antibodies prevent and reverse vitiligo in mice.
        J Invest Dermatol. 2017; 137: 982-985
        • Sanchez Rodriguez R.
        • Pauli M.L.
        • Neuhaus I.M.
        • Yu S.S.
        • Arron S.T.
        • Harris H.W.
        • et al.
        Memory regulatory T cells reside in human skin.
        J Clin Invest. 2014; 124: 1027-1036
        • Scharschmidt T.C.
        • Vasquez K.S.
        • Pauli M.L.
        • Leitner E.G.
        • Chu K.
        • Truong H.A.
        • et al.
        Commensal microbes and hair follicle morphogenesis coordinately drive Treg migration into neonatal skin.
        Cell Host Microbe. 2017; 21: 467-477.e5
        • Singh R.K.
        • Lee K.M.
        • Vujkovic-Cvijin I.
        • Ucmak D.
        • Farahnik B.
        • Abrouk M.
        • et al.
        The role of IL-17 in vitiligo: a review.
        Autoimmun Rev. 2016; 15: 397-404
        • Speeckaert R.
        • Mylle S.
        • van Geel N.
        IL-17A is not a treatment target in progressive vitiligo.
        Pigment Cell Melanoma Res. 2019; 32: 842-847
        • Spritz R.A.
        Modern vitiligo genetics sheds new light on an ancient disease.
        J Dermatol. 2013; 40: 310-318
        • Strassner J.P.
        • Rashighi M.
        • Ahmed Refat M.A.
        • Richmond J.M.
        • Harris J.E.
        Suction blistering the lesional skin of vitiligo patients reveals useful biomarkers of disease activity.
        J Am Acad Dermatol. 2017; 76: 847-855.e5
        • Terras S.
        • Gambichler T.
        • Moritz R.K.
        • Altmeyer P.
        • Lambert J.
        Immunohistochemical analysis of FOXP3+ regulatory T cells in healthy human skin and autoimmune dermatoses.
        Int J Dermatol. 2014; 53: 294-299
        • Turner J.E.
        • Paust H.J.
        • Steinmetz O.M.
        • Peters A.
        • Riedel J.H.
        • Erhardt A.
        • et al.
        CCR6 recruits regulatory T cells and Th17 cells to the kidney in glomerulonephritis.
        J Am Soc Nephrol. 2010; 21: 974-985
        • van den Boorn J.G.
        • Konijnenberg D.
        • Dellemijn T.A.
        • van der Veen J.P.
        • Bos J.D.
        • Melief C.J.
        • et al.
        Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients.
        J Invest Dermatol. 2009; 129: 2220-2232
        • van den Wijngaard R.
        • Wankowicz-Kalinska A.
        • Le Poole C.
        • Tigges B.
        • Westerhof W.
        • Das P.
        Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site.
        Lab Invest. 2000; 80: 1299-1309
        • Yamazaki T.
        • Yang X.O.
        • Chung Y.
        • Fukunaga A.
        • Nurieva R.
        • Pappu B.
        • et al.
        CCR6 regulates the migration of inflammatory and regulatory T cells.
        J Immunol. 2008; 181: 8391-8401

      Supplementary Reference

        • Harris J.E.
        • Harris T.H.
        • Weninger W.
        • Wherry E.J.
        • Hunter C.A.
        • Turka L.A.
        A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin.
        J Invest Dermatol. 2012; 132: 1869-1876