Advertisement

Analyzing the Spatial Randomness in the Distribution of Acquired Melanocytic Neoplasms

      On the basis of the clinical impression and current knowledge, acquired melanocytic nevi and melanomas may not occur in random localizations. The goal of this study was to identify whether their distribution on the back is random and whether the location of melanoma correlates with its adjacent lesions. Therefore, patient-level and lesion-level spatial analyses were performed using the Clark‒Evans test for complete spatial randomness. A total of 311 patients with three-dimensional total body photography (average age of 40.08 [30‒49] years; male/female ratio: 128/183) with 5,108 eligible lesions in total were included in the study (mean sum of eligible lesions per patient of 16.42 [3‒199]). The patient-level analysis revealed that the distributions of acquired melanocytic neoplasms were more likely to deviate toward clustering than dispersion (average z-score of ‒0.55 [95% confidence interval = ‒0.69 to ‒0.41; P < 0.001]). The lesion-level analysis indicated a higher portion of melanomas (n = 57 of 72, 79.2% [95% confidence interval = 69.4‒88.9%]) appearing in proximity to neighboring melanocytic neoplasms than to nevi (n = 2,281 of 5,036, 45.3% [95% confidence interval = 43.9‒46.7%]). In conclusion, the nevi and melanomas’ distribution on the back tends toward clustering as opposed to dispersion. Furthermore, melanomas are more likely to appear proximally to their neighboring neoplasms than to nevi. These findings may justify various oncogenic theories and improve diagnostic methodology.

      Abbreviations:

      3D (three-dimensional), CI (confidence interval), CSR (complete spatial randomness), TBP (total body photography)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'
      Society Members (SID/ESDR), remember to log in for access.

      Subscribe:

      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alomari A.K.
        • Miedema J.R.
        • Carter M.D.
        • Harms P.W.
        • Lowe L.
        • Durham A.B.
        • et al.
        DNA copy number changes correlate with clinical behavior in melanocytic neoplasms: proposal of an algorithmic approach.
        Mod Pathol. 2020; 33: 1307-1317
        • Barlow J.O.
        • Maize Sr., J.
        • Lang P.G.
        The density and distribution of melanocytes adjacent to melanoma and nonmelanoma skin cancers.
        Dermatol Surg. 2007; 33: 199-207
        • Bastian B.C.
        • Olshen A.B.
        • LeBoit P.E.
        • Pinkel D.
        Classifying melanocytic tumors based on DNA copy number changes.
        Am J Pathol. 2003; 163: 1765-1770
        • Bataille V.
        • Snieder H.
        • MacGregor A.J.
        • Sasieni P.
        • Spector T.D.
        Genetics of risk factors for melanoma: an adult twin study of nevi and freckles.
        J Natl Cancer Inst. 2000; 92: 457-463
        • Bauer J.
        • Büttner P.
        • Wiecker T.S.
        • Luther H.
        • Garbe C.
        Risk factors of incident melanocytic nevi: a longitudinal study in a cohort of 1,232 young German children.
        Int J Cancer. 2005; 115: 121-126
        • Clark P.J.
        • Evans F.C.
        Distance to nearest neighbor as a measure of spatial relationships in populations.
        Ecology. 1954; 35: 445-453
        • Dadzie O.E.
        • Goerig R.
        • Bhawan J.
        Incidental microscopic foci of nevic aggregates in skin.
        Am J Dermatopathol. 2008; 30: 45-50
        • de Wijn R.S.
        • Zaal L.H.
        • Hennekam R.C.
        • van der Horst C.M.
        Familial clustering of giant congenital melanocytic nevi.
        J Plast Reconstr Aesthet Surg. 2010; 63: 906-913
        • Driscoll M.S.
        • Grant-Kels J.M.
        Hormones, nevi, and melanoma: an approach to the patient.
        J Am Acad Dermatol. 2007; 57 (quiz 932–6): 919-931
        • Duffy D.L.
        • Zhu G.
        • Li X.
        • Sanna M.
        • Iles M.M.
        • Jacobs L.C.
        • et al.
        Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways.
        Nat Commun. 2018; 9 ([published correction appears in Nat Commun 2019;10:299]): 4774
        • Eliades P.
        • Tsao H.
        New insights into the molecular distinction of dysplastic nevi and common melanocytic nevi-highlighting the keratinocyte-melanocyte relationship.
        J Invest Dermatol. 2016; 136: 1933-1935
        • Gerami P.
        • Paller A.S.
        Making a mountain out of a molehill: NRAS, mosaicism, and large congenital nevi.
        J Invest Dermatol. 2013; 133: 2127-2130
        • Groesser L.
        • Herschberger E.
        • Ruetten A.
        • Ruivenkamp C.
        • Lopriore E.
        • Zutt M.
        • et al.
        Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome.
        Nat Genet. 2012; 44: 783-787
        • Hanley J.A.
        • Lippman-Hand A.
        If nothing goes wrong, is everything all right? Interpreting zero numerators.
        JAMA. 1983; 249: 1743-1745
        • Happle R.
        What is a nevus? A proposed definition of a common medical term.
        Dermatology. 1995; 191: 1-5
        • Hirobe T.
        • Enami H.
        Histochemical study of the distribution of epidermal melanoblasts and melanocytes in Asian human skin.
        Skin Res Technol. 2019; 25: 299-304
        • Holbrook K.A.
        • Underwood R.A.
        • Vogel A.M.
        • Gown A.M.
        • Kimball H.
        The appearance, density and distribution of melanocytes in human embryonic and fetal skin revealed by the anti-melanoma monoclonal antibody, HMB-45.
        Anat Embryol (Berl). 1989; 180: 443-455
        • Ingordo V.
        • Gentile C.
        • Iannazzone S.S.
        • Cusano F.
        • Naldi L.
        Congenital melanocytic nevus: an epidemiologic study in Italy.
        Dermatology. 2007; 214: 227-230
        • Juhl A.L.
        • Byers T.E.
        • Robinson W.A.
        • Morelli J.G.
        • Crane L.A.
        The anatomic distribution of melanoma and relationships with childhood nevus distribution in Colorado.
        Melanoma Res. 2009; 19: 252-259
        • Kinsler V.A.
        • Boccara O.
        • Fraitag S.
        • Torrelo A.
        • Vabres P.
        • Diociaiuti A.
        Mosaic abnormalities of the skin: review and guidelines from the European Reference Network for rare skin diseases.
        Br J Dermatol. 2020; 182: 552-563
        • Kinsler V.A.
        • Thomas A.C.
        • Ishida M.
        • Bulstrode N.W.
        • Loughlin S.
        • Hing S.
        • et al.
        Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS.
        J Invest Dermatol. 2013; 133 ([published correction appears in J Invest Dermatol 2016;136:2326]): 2229-2236
        • Levinsohn J.L.
        • Sugarman J.L.
        • Bilguvar K.
        • McNiff J.M.
        • Choate K.A.
        The Yale Center for Mendelian Genomics. Somatic V600E BRAF mutation in linear and sporadic syringocystadenoma papilliferum.
        J Invest Dermatol. 2015; 135: 2536-2538
        • Lindhurst M.J.
        • Sapp J.C.
        • Teer J.K.
        • Johnston J.J.
        • Finn E.M.
        • Peters K.
        • et al.
        A mosaic activating mutation in AKT1 associated with the Proteus syndrome.
        N Engl J Med. 2011; 365: 611-619
        • Maimon O.
        • Rokach L.
        Data mining and knowledge discovery handbook.
        Springer, Boston2010: 851-852
        • Maitra A.
        • Gazdar A.F.
        • Moore T.O.
        • Moore A.Y.
        Loss of heterozygosity analysis of cutaneous melanoma and benign melanocytic nevi: laser capture microdissection demonstrates clonal genetic changes in acquired nevocellular nevi.
        Hum Pathol. 2002; 33: 191-197
        • Martins da Silva V.
        • Martinez-Barrios E.
        • Tell-Martí G.
        • Dabad M.
        • Carrera C.
        • Aguilera P.
        • et al.
        Genetic abnormalities in large to giant congenital nevi: beyond NRAS mutations.
        J Invest Dermatol. 2019; 139: 900-908
        • Martins da Silva V.P.
        • Marghoob A.
        • Pigem R.
        • Carrera C.
        • Aguilera P.
        • Puig-Butillé J.A.
        • et al.
        Patterns of distribution of giant congenital melanocytic nevi (GCMN): the 6B rule.
        J Am Acad Dermatol. 2017; 76 ([published correction appears in J Am Acad Dermatol 2021;85:532]): 689-694
        • Olsen C.M.
        • Zens M.S.
        • Stukel T.A.
        • Sacerdote C.
        • Chang Y.M.
        • Armstrong B.K.
        • et al.
        Nevus density and melanoma risk in women: a pooled analysis to test the divergent pathway hypothesis.
        Int J Cancer. 2009; 124: 937-944
        • Piotrowski A.
        • Bruder C.E.
        • Andersson R.
        • Diaz de Ståhl T.
        • Menzel U.
        • Sandgren J.
        • et al.
        Somatic mosaicism for copy number variation in differentiated human tissues.
        Hum Mutat. 2008; 29: 1118-1124
        • Poźniak J.
        • Nsengimana J.
        • Laye J.P.
        • O'Shea S.J.
        • Diaz J.M.S.
        • Droop A.P.
        • et al.
        Genetic and environmental determinants of immune response to cutaneous melanoma.
        Cancer Res. 2019; 79: 2684-2696
        • Randi G.
        • Naldi L.
        • Gallus S.
        • Di Landro A.
        • La Vecchia C.
        Oncology Study Group of the Italian Group for Epidemiologic Research in Dermatology (GISED). Number of nevi at a specific anatomical site and its relation to cutaneous malignant melanoma.
        J Invest Dermatol. 2006; 126: 2106-2110
        • Rieger E.
        • Soyer H.P.
        • Garbe C.
        • Büttner P.
        • Kofler R.
        • Weiss J.
        • et al.
        Overall and site-specific risk of malignant melanoma associated with nevus counts at different body sites: a multicenter case-control study of the German Central Malignant-Melanoma Registry.
        Int J Cancer. 1995; 62: 393-397
        • Roh M.R.
        • Eliades P.
        • Gupta S.
        • Tsao H.
        Genetics of melanocytic nevi.
        Pigment Cell Melanoma Res. 2015; 28: 661-672
        • Rübben A.
        • Bogdan I.
        • Grussendorf-Conen E.I.
        • Burg G.
        • Böni R.
        Loss of heterozygosity and microsatellite instability in acquired melanocytic nevi: towards a molecular definition of the dysplastic nevus.
        Recent Results Cancer Res. 2002; 160: 100-110
        • Sarma N.
        Pigmentary nevi on face have unique patterns and implications: the concept of Blaschko's lines for pigmentary nevi.
        Indian J Dermatol. 2012; 57: 30-34
        • Scope A.
        • Marghoob A.A.
        • Chen C.S.
        • Lieb J.A.
        • Weinstock M.A.
        • Halpern A.C.
        • et al.
        Dermoscopic patterns and subclinical melanocytic nests in normal-appearing skin.
        Br J Dermatol. 2009; 160: 1318-1321
        • Smith T.E.
        Notebook on spatial data analysis. University of Pennsylvania, Philadelphia, PA2020 (p. I.3:3-11)
        • Stefanaki C.
        • Soura E.
        • Stergiopoulou A.
        • Kontochristopoulos G.
        • Katsarou A.
        • Potouridou I.
        • et al.
        Clinical and dermoscopic characteristics of congenital melanocytic naevi.
        J Eur Acad Dermatol Venereol. 2018; 32: 1674-1680
        • Sun K.L.
        • Liu W.
        • Gao X.M.
        • Yang M.
        • Chang J.M.
        A study of normal epidermal melanocyte distribution.
        Int J Dermatol Venereol. 2021; 4: 32-35
        • Torrelo A.
        Cutaneous mosaicism.
        in: Schachner L.A. Hansen R. Pediatric dermatology. Mosby, London2010: 529-556
        • Visconti A.
        • Ribero S.
        • Sanna M.
        • Spector T.D.
        • Bataille V.
        • Falchi M.
        Body site-specific genetic effects influence naevus count distribution in women.
        Pigment Cell Melanoma Res. 2020; 33: 326-333
        • Vredenborg A.
        • Böhringer S.
        • Boonk S.E.
        • Gruis N.A.
        • Out-Luijting C.
        • Kukutsch N.A.
        • et al.
        Acquired melanocytic nevi in childhood and familial melanoma.
        JAMA Dermatol. 2014; 150: 35-40
        • Welkovich B.
        • Landthaler M.
        • Schmoeckel C.
        • Braun-Falco O.
        Anzahl und Verteilung von Nävuszellnävi bei Patienten mit malignem Melanom [The number and distribution of nevus cell nevi in patients with malignant melanoma].
        Hautarzt. 1989; 40: 630-635
        • Zalaudek I.
        • Hofmann-Wellenhof R.
        • Kittler H.
        • Argenziano G.
        • Ferrara G.
        • Petrillo L.
        • et al.
        A dual concept of nevogenesis: theoretical considerations based on dermoscopic features of melanocytic nevi.
        J Dtsch Dermatol Ges. 2007; 5: 985-992
        • Zalaudek I.
        • Schmid K.
        • Marghoob A.A.
        • Scope A.
        • Manzo M.
        • Moscarella E.
        • et al.
        Frequency of dermoscopic nevus subtypes by age and body site: a cross-sectional study.
        Arch Dermatol. 2011; 147: 663-670
        • Zattra E.
        • Fortina A.B.
        • Bordignon M.
        • Piaserico S.
        • Alaibac M.
        Immunosuppression and melanocyte proliferation.
        Melanoma Res. 2009; 19: 63-68
        • Žilina O.
        • Koltšina M.
        • Raid R.
        • Kurg A.
        • Tõnisson N.
        • Salumets A.
        Somatic mosaicism for copy-neutral loss of heterozygosity and DNA copy number variations in the human genome.
        BMC Genomics. 2015; 16: 703