The risk of Merkel cell carcinoma recurrence beyond pathologically clear margins is currently unknown. An analysis of 530 Merkel cell carcinoma (MCC) re-excisions at Moffitt Cancer Center showed that the proportion of dot-positive cells was lower in virus-negative MCC (VN-MCC) than in virus-positive MCC (VP-MCC). Electron microscopy of dot-negative MCC cell lines showed that these cytoplasmic protein aggregates form around the centrosome, which was further confirmed by immunofluorescence (IF) in MCC tissues. We performed co-immunoprecipitation to validate the interaction. To identify putative regulator of the beta-catenin

Viraљically mediated mechanisms of HLA class I loss in Merkel cell carcinoma and implications for viral vaccine development

Joselynn Landazuri1,2, Kristyne Dye, Nick JH Salisbury, University of Washington, Seattle, WA; 2 Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA; 3 Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA; 4 Pathology, University of Washington, Seattle, WA; 5 Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA; 6 Department of Dermatology, University of Michigan, Ann Arbor, MI. Background and aims: Staining for Cytokeratin 20 (CK20) and other intermediate filaments in a para-constitutional SCC enhances cytokeratin aggregation in dot-negative cells. Remarkably, IF staining of native MCC tumors identified regions of paranuclear dot staining in 94% of tumors. Notably the paranuclear dot is a dynamic structure that reforms with each cell division. Treatment with nocodazole also resulted in disorganization of the paranuclear dot, demonstrating that microtubules are necessary to aggregate dot proteins. Moreover, loss or inhibition of KIF11 (kinesin-5) lead to disorganization of the paranuclear dot, implicating this microtubule motor. Conversely, inhibition of the E3 ubiquitin ligase Spn, Cullin, F-box containing complex (SCF) enhanced cytkeratin aggregation in dot-negative cells. Remarkably, IF staining showed colocalization of the paranuclear dot with Fox Associated Death Domain (FADD). Consistent with functional sequestration of FADD in the dot, tumor necrosis factor alpha and Fas ligand readily induced apoptosis in dot-negative MCC but had no effect on dot-positive MCC cell lines. Thus, the paranuclear dot may allow MCC tumors to evade extrinsic apoptosis by sequestering FADD. Surprisingly, we also identified the cell cycle regulatory protein, RR, intercalated in the paranuclear dot structure, suggesting that the paranuclear dot may also promote MCC cell proliferation. Conclusions: The paranuclear dot may contribute to MCC cell surviving cell death and sustaining proliferation, two hallmarks of cancer.