Advertisement

Cathelicidin LL-37 Activates Human Keratinocyte Autophagy through the P2X₇, Mechanistic Target of Rapamycin, and MAPK Pathways

  • Author Footnotes
    5 These authors contributed equally to this work.
    Risa Ikutama
    Footnotes
    5 These authors contributed equally to this work.
    Affiliations
    Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

    Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • Author Footnotes
    5 These authors contributed equally to this work.
    Ge Peng
    Footnotes
    5 These authors contributed equally to this work.
    Affiliations
    Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

    Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • Saya Tsukamoto
    Affiliations
    Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

    Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • Yoshie Umehara
    Affiliations
    Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • Juan Valentin Trujillo-Paez
    Affiliations
    Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • Hainan Yue
    Affiliations
    Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

    Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • Hai Le Thanh Nguyen
    Affiliations
    Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

    Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • Miho Takahashi
    Affiliations
    Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

    Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • Shun Kageyama
    Affiliations
    Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • Masaaki Komatsu
    Affiliations
    Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • Ko Okumura
    Affiliations
    Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • Hideoki Ogawa
    Affiliations
    Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • Shigaku Ikeda
    Affiliations
    Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

    Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
    Search for articles by this author
  • François Niyonsaba
    Correspondence
    Correspondence: François Niyonsaba, Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
    Affiliations
    Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

    Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
    Search for articles by this author
  • Author Footnotes
    5 These authors contributed equally to this work.
Published:November 28, 2022DOI:https://doi.org/10.1016/j.jid.2022.10.020
      Human cathelicidin LL-37 is a multifunctional antimicrobial peptide that exhibits antimicrobial and immunomodulatory activities. LL-37 regulates skin barrier function and was recently reported to activate autophagy in macrophages. Because autophagy deficiency is associated with skin diseases characterized by a dysfunctional epidermal barrier, we hypothesized that LL-37 might regulate the skin barrier through autophagy modulation. We showed that LL-37 activated autophagy in human keratinocytes and three-dimensional skin equivalent models as indicated by increases in LC3 puncta formation, decreases in p62, and autophagosome and autolysosome formation. LL-37‒induced autophagy was suppressed by P2X7 receptor, adenosine monophosphate‒activated protein kinase, and unc-51-like kinase 1 inhibitors, suggesting that the P2X7, adenosine monophosphate‒activated protein kinase, and unc-51-like kinase 1 pathways are involved. Moreover, LL-37 enhanced the phosphorylation of adenosine monophosphate‒activated protein kinase and unc-51-like kinase 1. In addition, LL-37‒mediated autophagy involves the mechanistic target of rapamycin and MAPK pathways. Interestingly, the LL-37‒induced distribution of tight junction proteins and improvement in the tight junction barrier were inhibited in autophagy-deficient keratinocytes and keratinocytes and skin models treated with autophagy inhibitors, indicating that the LL-37‒mediated tight junction barrier is associated with autophagy activation. Collectively, these findings suggest that LL-37 is a potential therapeutic target for skin diseases characterized by dysfunctional autophagy and skin barriers.

      Abbreviations:

      AD (atopic dermatitis), AMPK (adenosine monophosphate‒activated protein kinase), Ca2+ (calcium ion), KC (keratinocyte), mTOR (mechanistic target of rapamycin), TER (transepithelial electrical resistance), TJ (tight junction), ULK1 (unc-51-like kinase 1)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'
      Society Members (SID/ESDR), remember to log in for access.

      Subscribe:

      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aberg K.M.
        • Man M.Q.
        • Gallo R.L.
        • Ganz T.
        • Crumrine D.
        • Brown B.E.
        • et al.
        Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers.
        J Invest Dermatol. 2008; 128: 917-925
        • Akinduro O.
        • Sully K.
        • Patel A.
        • Robinson D.J.
        • Chikh A.
        • McPhail G.
        • et al.
        Constitutive autophagy and nucleophagy during epidermal differentiation.
        J Invest Dermatol. 2016; 136: 1460-1470
        • Akiyama T.
        • Niyonsaba F.
        • Kiatsurayanon C.
        • Nguyen T.T.
        • Ushio H.
        • Fujimura T.
        • et al.
        The human cathelicidin LL-37 host defense peptide upregulates tight junction-related proteins and increases human epidermal keratinocyte barrier function.
        J Innate Immun. 2014; 6: 739-753
        • Bian S.
        • Sun X.
        • Bai A.
        • Zhang C.
        • Li L.
        • Enjyoji K.
        • et al.
        P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate tumor cell death.
        PLoS One. 2013; 8e60184
        • Chieosilapatham P.
        • Ikeda S.
        • Ogawa H.
        • Niyonsaba F.
        Tissue-specific regulation of innate immune responses by human cathelicidin LL-37.
        Curr Pharm Des. 2018; 24: 1079-1091
        • Douroudis K.
        • Kingo K.
        • Traks T.
        • Reimann E.
        • Raud K.
        • Rätsep R.
        • et al.
        Polymorphisms in the ATG16L1 gene are associated with psoriasis vulgaris.
        Acta Derm Venereol. 2012; 92: 85-87
        • Dowdell A.S.
        • Cartwright I.M.
        • Goldberg M.S.
        • Kostelecky R.
        • Ross T.
        • Welch N.
        • et al.
        The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis.
        Mol Biol Cell. 2020; 31: 2249-2258
        • Elssner A.
        • Duncan M.
        • Gavrilin M.
        • Wewers M.D.
        A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release.
        J Immunol. 2004; 172: 4987-4994
        • Fabbrizio P.
        • Amadio S.
        • Apolloni S.
        • Volonté C.
        P2X7 receptor activation modulates autophagy in SOD1-G93A mouse microglia.
        Front Cell Neurosci. 2017; 11: 249
        • Fan X.Y.
        • Tian C.
        • Wang H.
        • Xu Y.
        • Ren K.
        • Zhang B.Y.
        • et al.
        Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection.
        Sci Rep. 2015; 5: 14728
        • Feng Y.
        • Huang Y.
        • Wang Y.
        • Wang P.
        • Song H.
        • Wang F.
        Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy.
        PLoS One. 2019; 14e0218384
        • Furuse M.
        • Hata M.
        • Furuse K.
        • Yoshida Y.
        • Haratake A.
        • Sugitani Y.
        • et al.
        Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice.
        J Cell Biol. 2002; 156: 1099-1111
        • Hara T.
        • Nakamura K.
        • Matsui M.
        • Yamamoto A.
        • Nakahara Y.
        • Suzuki-Migishima R.
        • et al.
        Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice.
        Nature. 2006; 441: 885-889
        • Harris J.
        Autophagy and cytokines.
        Cytokine. 2011; 56: 140-144
        • Huang Y.
        • Wang Y.
        • Feng Y.
        • Wang P.
        • He X.
        • Ren H.
        • et al.
        Role of endoplasmic reticulum stress-autophagy axis in severe burn-induced intestinal tight junction barrier dysfunction in mice.
        Front Physiol. 2019; 10: 606
        • Kabeya Y.
        • Mizushima N.
        • Ueno T.
        • Yamamoto A.
        • Kirisako T.
        • Noda T.
        • et al.
        LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing.
        EMBO J. 2000; ([published correction appears in EMBO J 2003;22:4577]): 5720-5728
        • Kim G.K.
        • Del Rosso J.Q.
        Drug-provoked psoriasis: is it drug induced or drug aggravated?: understanding pathophysiology and clinical relevance.
        J Clin Aesthet Dermatol. 2010; 3: 32-38
        • Kim H.R.
        • Kim J.C.
        • Kang S.Y.
        • Kim H.O.
        • Park C.W.
        • Chung B.Y.
        Rapamycin alleviates 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced aggravated dermatitis in mice with imiquimod-induced psoriasis-like fermatitis by inducing sutophagy.
        Int J Mol Sci. 2021; 22: 3968
        • Kim J.
        • Kundu M.
        • Viollet B.
        • Guan K.L.
        AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.
        Nat Cell Biol. 2011; 13: 132-141
        • Klapan K.
        • Frangež Ž.
        • Markov N.
        • Yousefi S.
        • Simon D.
        • Simon H.U.
        Evidence for lysosomal dysfunction within the epidermis in psoriasis and atopic dermatitis.
        J Invest Dermatol. 2021; 141: 2838-2848.e4
        • Klionsky D.J.
        • Abdel-Aziz A.K.
        • Abdelfatah S.
        • Abdellatif M.
        • Abdoli A.
        • Abel S.
        • et al.
        Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.
        Autophagy. 2021; 17: 1-382
        • Klionsky D.J.
        • Emr S.D.
        Autophagy as a regulated pathway of cellular degradation.
        Science. 2000; 290: 1717-1721
        • Kojima H.
        • Ando Y.
        • Idehara K.
        • Katoh M.
        • Kosaka T.
        • Miyaoka E.
        • et al.
        Validation study of the in vitro skin irritation test with the LabCyte EPI-MODEL24.
        Altern Lab Anim. 2012; 40: 33-50
        • Koria P.
        • Andreadis S.T.
        Epidermal morphogenesis: the transcriptional program of human keratinocytes during stratification.
        J Invest Dermatol. 2006; 126: 1834-1841
        • Kuroda K.
        • Okumura K.
        • Isogai H.
        • Isogai E.
        The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs.
        Front Oncol. 2015; 5: 144
        • Lee H.M.
        • Shin D.M.
        • Yuk J.M.
        • Shi G.
        • Choi D.K.
        • Lee S.H.
        • et al.
        Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1.
        J Immunol. 2011; 186: 1248-1258
        • Lee Y.
        • Shin K.
        • Shin K.O.
        • Yoon S.
        • Jung J.
        • Hwang E.
        • et al.
        Topical application of autophagy-activating peptide improved skin barrier function and reduced acne symptoms in acne-prone skin.
        J Cosmet Dermatol. 2021; 20: 1009-1016
        • Li C.
        • Johnson D.E.
        Bortezomib induces autophagy in head and neck squamous cell carcinoma cells via JNK activation.
        Cancer Lett. 2012; 314: 102-107
        • Murakami M.
        • Ohtake T.
        • Dorschner R.A.
        • Schittek B.
        • Garbe C.
        • Gallo R.L.
        Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin.
        J Invest Dermatol. 2002; 119: 1090-1095
        • Nighot P.K.
        • Hu C.A.
        • Ma T.Y.
        Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation.
        J Biol Chem. 2015; 290: 7234-7246
        • Niyonsaba F.
        • Kiatsurayanon C.
        • Chieosilapatham P.
        • Ogawa H.
        Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases.
        Exp Dermatol. 2017; 26: 989-998
        • Ohsumi Y.
        Molecular dissection of autophagy: two ubiquitin-like systems.
        Nat Rev Mol Cell Biol. 2001; 2: 211-216
        • Ong P.Y.
        • Ohtake T.
        • Brandt C.
        • Strickland I.
        • Boguniewicz M.
        • Ganz T.
        • et al.
        Endogenous antimicrobial peptides and skin infections in atopic dermatitis.
        N Engl J Med. 2002; 347: 1151-1160
        • Peng G.
        • Tsukamoto S.
        • Ikutama R.
        • Nguyen H.L.T.
        • Umehara Y.
        • Trujillo-Paez J.V.
        • et al.
        Human β-defensin-3 attenuates atopic dermatitis-like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway.
        J Clin Invest. 2022; 132e156501
        • Rekha R.S.
        • Rao Muvva S.S.
        • Wan M.
        • Raqib R.
        • Bergman P.
        • Brighenti S.
        • et al.
        Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of Mycobacterium tuberculosis in human macrophages.
        Autophagy. 2015; 11: 1688-1699
        • Rogov V.
        • Dötsch V.
        • Johansen T.
        • Kirkin V.
        Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy.
        Mol Cell. 2014; 53: 167-178
        • Rossiter H.
        • König U.
        • Barresi C.
        • Buchberger M.
        • Ghannadan M.
        • Zhang C.F.
        • et al.
        Epidermal keratinocytes form a functional skin barrier in the absence of Atg7 dependent autophagy.
        J Dermatol Sci. 2013; 71: 67-75
        • Schmeisser K.
        • Parker J.A.
        Pleiotropic effects of mTOR and autophagy during development and aging.
        Front Cell Dev Biol. 2019; 7: 192
        • Sou Y.S.
        • Waguri S.
        • Iwata J.
        • Ueno T.
        • Fujimura T.
        • Hara T.
        • et al.
        The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice.
        Mol Biol Cell. 2008; 19: 4762-4775
        • Sukseree S.
        • Bakiri L.
        • Palomo-Irigoyen M.
        • Uluçkan Ö.
        • Petzelbauer P.
        • Wagner E.F.
        Sequestosome 1/p62 enhances chronic skin inflammation.
        J Allergy Clin Immunol. 2021; 147: 2386-2393.e4
        • Sun T.
        • Li D.
        • Wang L.
        • Xia L.
        • Ma J.
        • Guan Z.
        • et al.
        C-Jun NH2-terminal kinase activation is essential for up-regulation of LC3 during ceramide-induced autophagy in human nasopharyngeal carcinoma cells.
        J Transl Med. 2011; 9: 161
        • Tong Y.
        • Huang H.
        • Pan H.
        Inhibition of MEK/ERK activation attenuates autophagy and potentiates pemetrexed-induced activity against HepG2 hepatocellular carcinoma cells.
        Biochem Biophys Res Commun. 2015; 456: 86-91
        • Umeda K.
        • Matsui T.
        • Nakayama M.
        • Furuse K.
        • Sasaki H.
        • Furuse M.
        • et al.
        Establishment and characterization of cultured epithelial cells lacking expression of ZO-1.
        J Biol Chem. 2004; 279: 44785-44794
        • Van Itallie C.M.
        • Fanning A.S.
        • Bridges A.
        • Anderson J.M.
        ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton.
        Mol Biol Cell. 2009; 20: 3930-3940
        • Wang Y.
        • Zhang H.
        Regulation of autophagy by mTOR signaling pathway.
        Adv Exp Med Biol. 2019; 1206: 67-83
        • Wang Z.
        • Zhou H.
        • Zheng H.
        • Zhou X.
        • Shen G.
        • Teng X.
        • et al.
        Autophagy-based unconventional secretion of HMGB1 by keratinocytes plays a pivotal role in psoriatic skin inflammation.
        Autophagy. 2021; 17: 529-552
        • Ye Y.C.
        • Yu L.
        • Wang H.J.
        • Tashiro S.
        • Onodera S.
        • Ikejima T.
        TNFα-induced necroptosis and autophagy via supression of the p38-NF-κB survival pathway in L929 cells.
        J Pharmacol Sci. 2011; 117: 160-169
        • Yoshida K.
        • Yokouchi M.
        • Nagao K.
        • Ishii K.
        • Amagai M.
        • Kubo A.
        Functional tight junction barrier localizes in the second layer of the stratum granulosum of human epidermis.
        J Dermatol Sci. 2013; 71: 89-99
        • Yoshii S.R.
        • Mizushima N.
        Monitoring and measuring autophagy.
        Int J Mol Sci. 2017; 18: 1865
        • Young C.N.
        • Sinadinos A.
        • Lefebvre A.
        • Chan P.
        • Arkle S.
        • Vaudry D.
        • et al.
        A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90.
        Autophagy. 2015; 11: 113-130
        • Yuk J.M.
        • Shin D.M.
        • Lee H.M.
        • Yang C.S.
        • Jin H.S.
        • Kim K.K.
        • et al.
        Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin.
        Cell Host Microbe. 2009; 6: 231-243
        • Yuki T.
        • Hachiya A.
        • Kusaka A.
        • Sriwiriyanont P.
        • Visscher M.O.
        • Morita K.
        • et al.
        Characterization of tight junctions and their disruption by UVB in human epidermis and cultured keratinocytes.
        J Invest Dermatol. 2011; 131: 744-752
        • Yuki T.
        • Haratake A.
        • Koishikawa H.
        • Morita K.
        • Miyachi Y.
        • Inoue S.
        Tight junction proteins in keratinocytes: localization and contribution to barrier function.
        Exp Dermatol. 2007; 16: 324-330
        • Zhao L.
        • Cui L.
        • Jiang X.
        • Zhang J.
        • Zhu M.
        • Jia J.
        • et al.
        Extracellular pH regulates autophagy via the AMPK-ULK1 pathway in rat cardiomyocytes.
        FEBS Lett. 2016; 590: 3202-3212
        • Zhou C.
        • Zhou J.
        • Sheng F.
        • Zhu H.
        • Deng X.
        • Xia B.
        • et al.
        The heme oxygenase-1 inhibitor ZnPPIX induces non-canonical, Beclin 1-independent, autophagy through p38 MAPK pathway.
        Acta Biochim Biophys Sin (Shanghai). 2012; 44: 815-822

      Supplementary References

        • Akiyama T.
        • Niyonsaba F.
        • Kiatsurayanon C.
        • Nguyen T.T.
        • Ushio H.
        • Fujimura T.
        • et al.
        The human cathelicidin LL-37 host defense peptide upregulates tight junction-related proteins and increases human epidermal keratinocyte barrier function.
        J Innate Immun. 2014; 6: 739-753
        • Ylä-Anttila P.
        • Vihinen H.
        • Jokitalo E.
        • Eskelinen E.L.
        Monitoring autophagy by electron microscopy in Mammalian cells.
        Methods Enzymol. 2009; 452: 143-164
        • Yuki T.
        • Hachiya A.
        • Kusaka A.
        • Sriwiriyanont P.
        • Visscher M.O.
        • Morita K.
        • et al.
        Characterization of tight junctions and their disruption by UVB in human epidermis and cultured keratinocytes.
        J Invest Dermatol. 2011; 131: 744-752