Keratinocyte Regnase-1, a Downregulator of Skin Inflammation, Contributes to Protection against Tumor Promotion by Limiting Cyclooxygenase-2 Expression

Published:December 02, 2022DOI:
      We previously showed that the ribonuclease Regnase-1 (Reg1) in keratinocytes plays a role in mitigating skin inflammation by downregulating proinflammatory cytokines. In this study, we explored whether Reg1 also has a protective role against skin carcinogenesis. The chemically induced two-stage carcinogenesis protocol revealed that epidermis-specific Reg1-deficient (Reg1-knockout [Reg1-cKO]) mice developed skin tumors with shorter latency and more multiplicity than control mice. In addition, repeated UVB irradiation readily provoked solar keratosis-like lesions in Reg1-cKO mice. Increased levels of cyclooxygenase 2, whose mRNA (Ptgs2) is reportedly a target of Reg1, have been known to be associated with the development of squamous cell carcinomas. Indeed, Ptgs2 mRNA levels were upregulated in the skin of Reg1-cKO mice after treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. The level of prostaglandin E2 was higher in 12-O-tetradecanoylphorbol-13-acetate‒treated Reg1-cKO mouse skin than in control mice skin. Moreover, in vivo inhibition of cyclooxygenase 2 attenuated the 12-O-tetradecanoylphorbol-13-acetate‒induced epidermal thickening in Reg1-cKO mice. Finally, REG1 knockdown in human squamous cell carcinomas lines enhanced PTGS2 mRNA levels after 12-O-tetradecanoylphorbol-13-acetate treatment. In conclusion, epidermal Reg1 plays a regulatory role not only in skin inflammation but also in tumor promotion through the downregulation of cyclooxygenase 2. Therefore, forced expression of Reg1 under inflammatory conditions may be relevant to preventing skin cancer.


      COX-2 (cyclooxygenase 2), DMBA (7,12-dimethylbenz[a]anthracene), IMQ (imiquimod), KC (keratinocyte), SCC (squamous cell carcinoma), PGE2 (prostaglandin E2), Reg1 (Regnase-1), Reg1-cKO (Regnase-1‒knockout), siRNA (small interfering RNA), TPA (12-O-tetradecanoylphorbol-13-acetate)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'
      Society Members (SID/ESDR), remember to log in for access.


      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Angel J.M.
        • Caballero M.
        • DiGiovanni J.
        Identification of novel genetic loci contributing to 12-O-tetradecanoylphorbol-13-acetate skin tumor promotion susceptibility in DBA/2 and C57BL/6 mice.
        Cancer Res. 2003; 63: 2747-2751
        • Boratyn E.
        • Nowak I.
        • Durbas M.
        • Horwacik I.
        • Sawicka A.
        • Rokita H.
        MCPIP1 exogenous overexpression inhibits pathways regulating MYCN oncoprotein stability in neuroblastoma.
        J Cell Biochem. 2017; 118: 1741-1755
        • Coussens L.M.
        • Werb Z.
        Inflammation and cancer.
        Nature. 2002; 420: 860-867
        • Fischer S.M.
        • Pavone A.
        • Mikulec C.
        • Langenbach R.
        • Rundhaug J.E.
        Cyclooxygenase-2 expression is critical for chronic UV-induced murine skin carcinogenesis.
        Mol Carcinog. 2007; 46: 363-371
        • Fox J.G.
        • Wang T.C.
        Inflammation, atrophy, and gastric cancer.
        J Clin Invest. 2007; 117: 60-69
        • Gorka J.
        • Marona P.
        • Kwapisz O.
        • Rys J.
        • Jura J.
        • Miekus K.
        The anti-inflammatory protein MCPIP1 inhibits the development of ccRCC by maintaining high levels of tumour suppressors.
        Eur J Pharmacol. 2020; 888: 173591
        • Greenhough A.
        • Smartt H.J.
        • Moore A.E.
        • Roberts H.R.
        • Williams A.C.
        • Paraskeva C.
        • et al.
        The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment.
        Carcinogenesis. 2009; 30: 377-386
        • Harris R.E.
        Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung.
        Inflammopharmacology. 2009; 17: 55-67
        • Iwasaki H.
        • Takeuchi O.
        • Teraguchi S.
        • Matsushita K.
        • Uehata T.
        • Kuniyoshi K.
        • et al.
        The IkappaB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1.
        Nat Immunol. 2011; 12: 1167-1175
        • Kujubu D.A.
        • Fletcher B.S.
        • Varnum B.C.
        • Lim R.W.
        • Herschman H.R.
        TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue.
        J Biol Chem. 1991; 266: 12866-12872
        • Li M.
        • Cao W.
        • Liu H.
        • Zhang W.
        • Liu X.
        • Cai Z.
        • et al.
        MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway.
        PLoS One. 2012; 7e49841
        • Liang J.
        • Wang J.
        • Azfer A.
        • Song W.
        • Tromp G.
        • Kolattukudy P.E.
        • et al.
        A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages.
        J Biol Chem. 2008; 283: 6337-6346
        • Ligeza J.
        • Marona P.
        • Gach N.
        • Lipert B.
        • Miekus K.
        • Wilk W.
        • et al.
        MCPIP1 contributes to clear cell renal cell carcinomas development.
        Angiogenesis. 2017; 20: 325-340
        • Mahil S.K.
        • Catapano M.
        • Di Meglio P.
        • Dand N.
        • Ahlfors H.
        • Carr I.M.
        • et al.
        An analysis of IL-36 signature genes and individuals with IL1RL2 knockout mutations validates IL-36 as a psoriasis therapeutic target.
        Sci Transl Med. 2017; : 9
        • Matsushita K.
        • Takeuchi O.
        • Standley D.M.
        • Kumagai Y.
        • Kawagoe T.
        • Miyake T.
        • et al.
        Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay.
        Nature. 2009; 458: 1185-1190
        • Menter D.G.
        • Schilsky R.L.
        • DuBois R.N.
        Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward.
        Clin Cancer Res. 2010; 16: 1384-1390
        • Mino T.
        • Murakawa Y.
        • Fukao A.
        • Vandenbon A.
        • Wessels H.H.
        • Ori D.
        • et al.
        Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms.
        Cell. 2015; 161: 1058-1073
        • Monin L.
        • Gudjonsson J.E.
        • Childs E.E.
        • Amatya N.
        • Xing X.
        • Verma A.H.
        • et al.
        MCPIP1/Regnase-1 restricts IL-17A- and IL-17C-dependent skin inflammation.
        J Immunol. 2017; 198: 767-775
        • Mueller M.M.
        Inflammation in epithelial skin tumours: old stories and new ideas.
        Eur J Cancer. 2006; 42: 735-744
        • Müller-Decker K.
        Cyclooxygenase-dependent signaling is causally linked to non-melanoma skin carcinogenesis: pharmacological, genetic, and clinical evidence.
        Cancer Metastasis Rev. 2011; 30: 343-361
        • Nickoloff B.J.
        Creation of psoriatic plaques: the ultimate tumor suppressor pathway. A new model for an ancient T-cell-mediated skin disease.
        Viewpoint. J Cutan Pathol. 2001; 28: 57-64
        • Queen D.
        • Ediriweera C.
        • Liu L.
        Function and regulation of IL-36 signaling in inflammatory diseases and cancer development.
        Front Cell Dev Biol. 2019; 7: 317
        • Racanelli E.
        • Jfri A.
        • Gefri A.
        • O'Brien E.
        • Litvinov I.V.
        • Zubarev A.
        • et al.
        Cutaneous squamous cell carcinoma in patients with hidradenitis suppurativa.
        Cancers. 2021; : 13
        • Ruiz-Romeu E.
        • Ferran M.
        • Giménez-Arnau A.
        • Bugara B.
        • Lipert B.
        • Jura J.
        • et al.
        MCPIP1 RNase is aberrantly distributed in psoriatic epidermis and rapidly induced by IL-17A.
        J Invest Dermatol. 2016; 136: 1599-1607
        • Rundhaug J.E.
        • Mikulec C.
        • Pavone A.
        • Fischer S.M.
        A role for cyclooxygenase-2 in ultraviolet light-induced skin carcinogenesis.
        Mol Carcinog. 2007; 46: 692-698
        • Sano S.
        • Chan K.S.
        • DiGiovanni J.
        Impact of Stat3 activation upon skin biology: a dichotomy of its role between homeostasis and diseases.
        J Dermatol Sci. 2008; 50: 1-14
        • Sparna T.
        • Rétey J.
        • Schmich K.
        • Albrecht U.
        • Naumann K.
        • Gretz N.
        • et al.
        Genome-wide comparison between IL-17 and combined TNF-alpha/IL-17 induced genes in primary murine hepatocytes.
        BMC Genomics. 2010; 11: 226
        • Szukala W.
        • Lichawska-Cieslar A.
        • Pietrzycka R.
        • Kulecka M.
        • Rumienczyk I.
        • Mikula M.
        • et al.
        Loss of epidermal MCPIP1 is associated with aggressive squamous cell carcinoma.
        J Exp Clin Cancer Res. 2021; 40: 391
        • Takaishi M.
        • Satoh T.
        • Akira S.
        • Sano S.
        Regnase-1, an immunomodulator, limits the IL-36/IL-36R autostimulatory loop in keratinocytes to suppress skin inflammation.
        J Invest Dermatol. 2018; 138: 1439-1442
        • Tang M.S.
        • Vulimiri S.V.
        • Viaje A.
        • Chen J.X.
        • Bilolikar D.S.
        • Morris R.J.
        • et al.
        Both (+/-)syn- and (+/-)anti-7,12-dimethylbenz[a]anthracene-3,4-diol-1,2-epoxides initiate tumors in mouse skin that possess -CAA- to -CTA- mutations at Codon 61 of c-H-ras.
        Cancer Res. 2000; 60: 5688-5695
        • Thomas G.J.
        • Herranz P.
        • Cruz S.B.
        • Parodi A.
        Treatment of actinic keratosis through inhibition of cyclooxygenase-2: potential mechanism of action of diclofenac sodium 3% in hyaluronic acid 2.5.
        Dermatol Ther. 2019; 32e12800
        • Uehata T.
        • Iwasaki H.
        • Vandenbon A.
        • Matsushita K.
        • Hernandez-Cuellar E.
        • Kuniyoshi K.
        • et al.
        Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation.
        Cell. 2013; 153: 1036-1049