Advertisement

Enhanced Spontaneous Skin Tumorigenesis and Aberrant Inflammatory Response to UVB Exposure in Immunosuppressed Human Papillomavirus Type 8‒Transgenic Mice

Published:December 05, 2022DOI:https://doi.org/10.1016/j.jid.2022.10.023
      Human papillomaviruses (HPVs) from the beta genus are commensal viruses of the skin usually associated with asymptomatic infection in the general population. However, in individuals with specific genetic backgrounds, such as patients with epidermodysplasia verruciformis, or those with immune defects, such as organ transplant recipients, they are functionally involved in sunlight-induced skin cancer development, mainly keratinocyte carcinoma. Despite their well-established protumorigenic role, the cooperation between β-HPV infection, impaired host immunosurveillance, and UVB exposure has never been formally shown in animal models. In this study, by crossing skin-specific HPV8-transgenic mice with Rag2-deficient mice, we have generated a preclinical mouse model, named Rag2‒/‒:K14-HPV8. These mice display an unhealthy skin phenotype and spontaneously develop papilloma-like lesions spreading to the entire skin much more rapidly compared with Rag2+/+:K14-HPV8 mice. Exposure to low doses of UVB radiation is sufficient to trigger severe skin inflammation in Rag2‒/‒:K14-HPV8 but not in Rag2+/+:K14-HPV8 mice. Their inflamed skin very much resembled that observed in cutaneous field cancerization in organ transplant recipients, showing high levels of UVB-damaged cells, enhanced production of proinflammatory cytokines, and mast cell recruitment to the dermis. Overall, this immunocompromised HPV8-transgenic mouse model shows that the coexistence of immune defects, β-HPV, and UVB exposure promotes skin cancer development.

      Abbreviations:

      EV (epidermodysplasia verruciformis), HPV (human papillomavirus), KC (keratinocyte carcinoma), OTR (organ transplant recipient), PCNA (proliferating cell nuclear antigen)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'
      Society Members (SID/ESDR), remember to log in for access.

      Subscribe:

      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Akgül B.
        • Cooke J.C.
        • Storey A.
        HPV-associated skin disease.
        J Pathol. 2006; 208: 165-175
        • Antonsson A.
        • Waterboer T.
        • Bouwes Bavinck J.N.
        • Abeni D.
        • de Koning M.
        • Euvrard S.
        • et al.
        Longitudinal study of seroprevalence and serostability of 34 human papillomavirus types in European organ transplant recipients.
        Virology. 2013; 436: 91-99
        • Antsiferova M.
        • Martin C.
        • Huber M.
        • Feyerabend T.B.
        • Förster A.
        • Hartmann K.
        • et al.
        Mast cells are dispensable for normal and activin-promoted wound healing and skin carcinogenesis.
        J Immunol. 2013; 191: 6147-6155
        • Basukala O.
        • Banks L.
        The not-so-good, the bad and the ugly: HPV E5, E6 and E7 oncoproteins in the orchestration of carcinogenesis.
        Viruses. 2021; 13: 1892
        • Béziat V.
        • Casanova J.L.
        • Jouanguy E.
        Human genetic and immunological dissection of papillomavirus-driven diseases: new insights into their pathogenesis.
        Curr Opin Virol. 2021; 51: 9-15
        • Biswas A.
        • Richards J.E.
        • Massaro J.
        • Mahalingam M.
        Mast cells in cutaneous tumors: innocent bystander or maestro conductor?.
        Int J Dermatol. 2014; 53: 806-811
        • Borgogna C.
        • Landini M.M.
        • Lanfredini S.
        • Doorbar J.
        • Bouwes Bavinck J.N.
        • Quint K.D.
        • et al.
        Characterization of skin lesions induced by skin-tropic α- and β-papillomaviruses in a patient with epidermodysplasia verruciformis.
        Br J Dermatol. 2014; 171: 1550-1554
        • Borgogna C.
        • Lanfredini S.
        • Peretti A.
        • De Andrea M.
        • Zavattaro E.
        • Colombo E.
        • et al.
        Improved detection reveals active β-papillomavirus infection in skin lesions from kidney transplant recipients.
        Mod Pathol. 2014; 27 ([published correction appears in Mod Pathol 2014b;27:917]): 1101-1115
        • Borgogna C.
        • Olivero C.
        • Lanfredini S.
        • Calati F.
        • De Andrea M.
        • Zavattaro E.
        • et al.
        β-HPV infection correlates with early stages of carcinogenesis in skin tumors and patient-derived xenografts from a kidney transplant recipient cohort.
        Front Microbiol. 2018; 9: 117
        • Borgogna C.
        • Zavattaro E.
        • De Andrea M.
        • Griffin H.M.
        • Dell’Oste V.
        • Azzimonti B.
        • et al.
        Characterization of beta papillomavirus E4 expression in tumours from epidermodysplasia verruciformis patients and in experimental models.
        Virology. 2012; 423: 195-204
        • Bouwes Bavinck J.N.
        • Feltkamp M.C.W.
        • Green A.C.
        • Fiocco M.
        • Euvrard S.
        • Harwood C.A.
        • et al.
        Human papillomavirus and posttransplantation cutaneous squamous cell carcinoma: a multicenter, prospective cohort study.
        Am J Transplant. 2018; 18: 1220-1230
        • Bouwes Bavinck J.N.B.
        • Neale R.E.
        • Abeni D.
        • Euvrard S.
        • Green A.C.
        • Harwood C.A.
        • et al.
        Multicenter study of the association between Betapapillomavirus infection and cutaneous squamous cell carcinoma.
        Cancer Res. 2010; 70: 9777-9786
        • Braakhuis B.J.M.
        • Tabor M.P.
        • Kummer J.A.
        • Leemans C.R.
        • Brakenhoff R.H.
        A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications.
        Cancer Res. 2003; 63: 1727-1730
        • Chang H.H.Y.
        • Pannunzio N.R.
        • Adachi N.
        • Lieber M.R.
        Non-homologous DNA end joining and alternative pathways to double-strand break repair.
        Nat Rev Mol Cell Biol. 2017; 18: 495-506
        • Cubie H.A.
        Diseases associated with human papillomavirus infection.
        Virology. 2013; 445: 21-34
        • Dacus D.
        • Wallace N.A.
        Beta-genus human papillomavirus 8 E6 destabilizes the host genome by promoting p300 degradation.
        Viruses. 2021; 13: 1662
        • De Andrea M.
        • Rittà M.
        • Landini M.M.
        • Borgogna C.
        • Mondini M.
        • Kern F.
        • et al.
        Keratinocyte-specific stat3 heterozygosity impairs development of skin tumors in human papillomavirus 8 transgenic mice.
        Cancer Res. 2010; 70: 7938-7948
        • de Jong S.J.
        • Créquer A.
        • Matos I.
        • Hum D.
        • Gunasekharan V.
        • Lorenzo L.
        • et al.
        The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses.
        J Exp Med. 2018; 215: 2289-2310
        • Dell’Oste V.
        • Azzimonti B.
        • De Andrea M.
        • Mondini M.
        • Zavattaro E.
        • Leigheb G.
        • et al.
        High β-HPV DNA loads and strong seroreactivity are present in epidermodysplasia verruciformis.
        J Invest Dermatol. 2009; 129: 1026-1034
        • Deshmukh J.
        • Pofahl R.
        • Pfister H.
        • Haase I.
        Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis.
        Oncotarget. 2016; 7: 57841-57850
        • Egawa N.
        • Egawa K.
        • Griffin H.
        • Doorbar J.
        Human papillomaviruses; epithelial tropisms, and the development of neoplasia.
        Viruses. 2015; 7: 3863-3890
        • Fitsiou E.
        • Pulido T.
        • Campisi J.
        • Alimirah F.
        • Demaria M.
        Cellular senescence and the senescence-associated secretory phenotype as drivers of skin photoaging.
        J Invest Dermatol. 2021; 141: 1119-1126
        • Galloway D.A.
        • Laimins L.A.
        Human papillomaviruses: shared and distinct pathways for pathogenesis.
        Curr Opin Virol. 2015; 14: 87-92
        • Genders R.E.
        • Mazlom H.
        • Michel A.
        • Plasmeijer E.I.
        • Quint K.D.
        • Pawlita M.
        • et al.
        The presence of Betapapillomavirus antibodies around transplantation predicts the development of keratinocyte carcinoma in organ transplant recipients: a cohort study.
        J Invest Dermatol. 2015; 135: 1275-1282
        • Gheit T.
        Mucosal and cutaneous human papillomavirus infections and cancer biology.
        Front Oncol. 2019; 9: 355
        • Ghouse S.M.
        • Polikarpova A.
        • Muhandes L.
        • Dudeck J.
        • Tantcheva-Poór I.
        • Hartmann K.
        • et al.
        Although abundant in tumor tissue, mast cells have no effect on immunological micro-milieu or growth of HPV-induced or transplanted tumors.
        Cell Rep. 2018; 22: 27-35
        • Giampieri S.
        • Storey A.
        Repair of UV-induced thymine dimers is compromised in cells expressing the E6 protein from human papillomaviruses types 5 and 18.
        Br J Cancer. 2004; 90: 2203-2209
        • Gilchrest B.A.
        Actinic keratoses: reconciling the biology of field cancerization with treatment paradigms.
        J Invest Dermatol. 2021; 141: 727-731
        • Hao Z.
        • Rajewsky K.
        Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow.
        J Exp Med. 2001; 194: 1151-1164
        • Hasche D.
        • Stephan S.
        • Braspenning-Wesch I.
        • Mikulec J.
        • Niebler M.
        • Gröne H.J.
        • et al.
        The interplay of UV and cutaneous papillomavirus infection in skin cancer development.
        PLoS Pathog. 2017; 13e1006723
        • Holloway A.
        • Simmonds M.
        • Azad A.
        • Fox J.L.
        • Storey A.
        Resistance to UV-induced apoptosis by β-HPV5 E6 involves targeting of activated BAK for proteolysis by recruitment of the HERC1 ubiquitin ligase.
        Int J Cancer. 2015; 136: 2831-2843
        • Howley P.M.
        • Pfister H.J.
        Beta genus papillomaviruses and skin cancer.
        Virology. 2015; 479–480: 290-296
        • Hufbauer M.
        • Akgül B.
        Molecular mechanisms of human papillomavirus induced skin carcinogenesis.
        Viruses. 2017; 9: 187
        • Hufbauer M.
        • Cooke J.
        • van der Horst G.T.J.
        • Pfister H.
        • Storey A.
        • Akgül B.
        Human papillomavirus mediated inhibition of DNA damage sensing and repair drives skin carcinogenesis.
        Mol Cancer. 2015; 14: 183
        • Kaukinen A.
        • Pelkonen J.
        • Harvima I.T.
        Mast cells express CYP27A1 and CYP27B1 in epithelial skin cancers and psoriasis.
        Eur J Dermatol. 2015; 25: 548-555
        • Kranjec C.
        • Doorbar J.
        Human papillomavirus infection and induction of neoplasia: a matter of fitness.
        Curr Opin Virol. 2016; 20: 129-136
        • Kreuter A.
        • Gambichler T.
        • Pfister H.
        • Wieland U.
        Diversity of human papillomavirus types in periungual squamous cell carcinoma.
        Br J Dermatol. 2009; 161: 1262-1269
        • Lambert P.F.
        • Münger K.
        • Rösl F.
        • Hasche D.
        • Tommasino M.
        Beta human papillomaviruses and skin cancer.
        Nature. 2020; 588: E20-E21
        • Landini M.M.
        • Borgogna C.
        • Peretti A.
        • Colombo E.
        • Zavattaro E.
        • Boldorini R.
        • et al.
        α- and β-Papillomavirus infection in a young patient with an unclassified primary T-cell immunodeficiency and multiple mucosal and cutaneous lesions.
        J Am Acad Dermatol. 2014; 71 (–15.e1): 108
        • Landini M.M.
        • Zavattaro E.
        • Borgogna C.
        • Azzimonti B.
        • De Andrea M.
        • Colombo E.
        • et al.
        Lack of EVER2 protein in two epidermodysplasia verruciformis patients with skin cancer presenting previously unreported homozygous genetic deletions in the EVER2 gene.
        J Invest Dermatol. 2012; 132: 1305-1308
        • Lanfredini S.
        • Olivero C.
        • Borgogna C.
        • Calati F.
        • Powell K.
        • Davies K.J.
        • et al.
        HPV8 field cancerization in a transgenic mouse model is due to Lrig1+ keratinocyte stem cell expansion.
        J Invest Dermatol. 2017; 137: 2208-2216
        • Lazarczyk M.
        • Cassonnet P.
        • Pons C.
        • Jacob Y.
        • Favre M.
        The EVER proteins as a natural barrier against papillomaviruses: a new insight into the pathogenesis of human papillomavirus infections.
        Microbiol Mol Biol Rev. 2009; 73: 348-370
        • Lechner M.
        • Liu J.
        • Masterson L.
        • Fenton T.R.
        HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management.
        Nat Rev Clin Oncol. 2022; 19: 306-327
        • Lei T.
        • Du S.
        • Peng Z.
        • Chen L.
        Multifaceted regulation and functions of 53BP1 in NHEJ-mediated DSB repair [review].
        Int J Mol Med. 2022; 50: 90
        • Mantovani A.
        • Allavena P.
        • Sica A.
        • Balkwill F.
        Cancer-related inflammation.
        Nature. 2008; 454: 436-444
        • Marcuzzi G.P.
        • Hufbauer M.
        • Kasper H.U.
        • Weißenborn S.J.
        • Smola S.
        • Pfister H.
        Spontaneous tumour development in human papillomavirus type 8 E6 transgenic mice and rapid induction by UV-light exposure and wounding.
        J Gen Virol. 2009; 90: 2855-2864
        • Marthaler A.M.
        • Podgorska M.
        • Feld P.
        • Fingerle A.
        • Knerr-Rupp K.
        • Grässer F.
        • et al.
        Identification of C/EBPα as a novel target of the HPV8 E6 protein regulating miR-203 in human keratinocytes.
        PLoS Pathog. 2017; 13e1006406
        • McBride A.A.
        Human papillomaviruses: diversity, infection and host interactions.
        Nat Rev Microbiol. 2022; 20: 95-108
        • Michel A.
        • Kopp-Schneider A.
        • Zentgraf H.
        • Gruber A.D.
        • de Villiers E.M.
        E6/E7 expression of human papillomavirus type 20 (HPV-20) and HPV-27 influences proliferation and differentiation of the skin in UV-irradiated SKH-hr1 transgenic mice.
        J Virol. 2006; 80: 11153-11164
        • Neagu M.
        • Constantin C.
        • Caruntu C.
        • Dumitru C.
        • Surcel M.
        • Zurac S.
        Inflammation: a key process in skin tumorigenesis.
        Oncol Lett. 2019; 17: 4068-4084
        • Olivero C.
        • Lanfredini S.
        • Borgogna C.
        • Gariglio M.
        • Patel G.K.
        HPV-induced field cancerisation: transformation of adult tissue stem cell into cancer stem cell.
        Front Microbiol. 2018; 9: 546
        • Orth G.
        Genetics of epidermodysplasia verruciformis: insights into host defense against papillomaviruses.
        Semin Immunol. 2006; 18: 362-374
        • Pfister H.
        Chapter 8: human papillomavirus and skin cancer.
        J Natl Cancer Inst Monogr. 2003; 31: 52-56
        • Proby C.M.
        • Harwood C.A.
        • Neale R.E.
        • Green A.C.
        • Euvrard S.
        • Naldi L.
        • et al.
        A Case-Control Study of Betapapillomavirus infection and cutaneous squamous cell carcinoma in organ transplant recipients.
        Am J Transplant. 2011; 11: 1498-1508
        • Quint K.D.
        • Genders R.E.
        • de Koning M.N.C.
        • Borgogna C.
        • Gariglio M.
        • Bouwes Bavinck J.N.
        • et al.
        Human Beta-papillomavirus infection and keratinocyte carcinomas.
        J Pathol. 2015; 235: 342-354
        • Rahkola D.
        • Laitala J.
        • Siiskonen H.
        • Pelkonen J.
        • Harvima I.T.
        Mast cells are a marked source for complement C3 products that associate with increased CD11b-positive cells in keratinocyte skin carcinomas.
        Cancer Invest. 2019; 37: 73-84
        • Ramoz N.
        • Rueda L.A.
        • Bouadjar B.
        • Montoya L.S.
        • Orth G.
        • Favre M.
        Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis.
        Nat Genet. 2002; 32: 579-581
        • Rappold I.
        • Iwabuchi K.
        • Date T.
        • Chen J.
        Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways [published correction appears in J Cell Biol 2001;154:469.
        J Cell Biol. 2001; 153: 613-620
        • Ritter M.L.
        • Pirofski L.
        Mycophenolate mofetil: effects on cellular immune subsets, infectious complications, and antimicrobial activity.
        Transpl Infect Dis. 2009; 11: 290-297
        • Roberts M.B.
        • Fishman J.A.
        Immunosuppressive agents and infectious risk in transplantation: managing the "Net State of immunosuppression".
        Clin Infect Dis. 2021; 73 (–e1317): e1302-e1317
        • Rollison D.E.
        • Amorrortu R.P.
        • Zhao Y.
        • Messina J.L.
        • Schell M.J.
        • Fenske N.A.
        • et al.
        Cutaneous human papillomaviruses and the risk of keratinocyte carcinomas.
        Cancer Res. 2021; 81: 4628-4638
        • Rollison D.E.
        • Viarisio D.
        • Amorrortu R.P.
        • Gheit T.
        • Tommasino M.
        An emerging issue in oncogenic virology: the role of beta human papillomavirus types in the development of cutaneous squamous cell carcinoma.
        J Virol. 2019; 93: e01003-e01018
        • Saluzzo S.
        • Pandey R.V.
        • Gail L.M.
        • Dingelmaier-Hovorka R.
        • Kleissl L.
        • Shaw L.
        • et al.
        Delayed antiretroviral therapy in HIV-infected individuals leads to irreversible depletion of skin- and mucosa-resident memory T cells.
        Immunity. 2021; 54: 2842-2858.e5
        • Schaper I.D.
        • Marcuzzi G.P.
        • Weissenborn S.J.
        • Kasper H.U.
        • Dries V.
        • Smyth N.
        • et al.
        Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8.
        Cancer Res. 2005; 65: 1394-1400
        • Siebenhaar F.
        • Metz M.
        • Maurer M.
        Mast cells protect from skin tumor development and limit tumor growth during cutaneous de novo carcinogenesis in a Kit-dependent mouse model.
        Exp Dermatol. 2014; 23: 159-164
        • Simmonds M.
        • Storey A.
        Identification of the regions of the HPV 5 E6 protein involved in Bak degradation and inhibition of apoptosis.
        Int J Cancer. 2008; 123: 2260-2266
        • Smola S.
        Immunopathogenesis of HPV-associated cancers and prospects for immunotherapy.
        Viruses. 2017; 9: 254
        • Strickley J.D.
        • Messerschmidt J.L.
        • Awad M.E.
        • Li T.
        • Hasegawa T.
        • Ha D.T.
        • et al.
        Immunity to commensal papillomaviruses protects against skin cancer.
        Nature. 2019; 575: 519-522
        • Tampa M.
        • Mitran C.I.
        • Mitran M.I.
        • Nicolae I.
        • Dumitru A.
        • Matei C.
        • et al.
        The role of beta HPV types and HPV-associated inflammatory processes in cutaneous squamous cell carcinoma.
        J Immunol Res. 2020; 20205701639
        • Tetzlaff M.T.
        • Curry J.L.
        • Ning J.
        • Sagiv O.
        • Kandl T.L.
        • Peng B.
        • et al.
        Distinct biological types of ocular adnexal sebaceous carcinoma: HPV-driven and virus-negative tumors arise through nonoverlapping molecular-genetic alterations.
        Clin Cancer Res. 2019; 25: 1280-1290
        • Tommasino M.
        The biology of beta human papillomaviruses.
        Virus Res. 2017; 231: 128-138
        • Tommasino M.
        HPV and skin carcinogenesis.
        Papillomavirus Res. 2019; 7: 129-131
        • Uitto J.
        • Saeidian A.H.
        • Youssefian L.
        • Saffarian Z.
        • Casanova J.L.
        • Béziat V.
        • et al.
        Recalcitrant warts, epidermodysplasia verruciformis, and the tree-man syndrome: phenotypic spectrum of cutaneous human papillomavirus infections at the intersection of genetic variability of viral and human genomes.
        J Invest Dermatol. 2022; 142: 1265-1269
        • Underbrink M.P.
        • Howie H.L.
        • Bedard K.M.
        • Koop J.I.
        • Galloway D.A.
        E6 proteins from multiple human Betapapillomavirus types degrade Bak and protect keratinocytes from apoptosis after UVB irradiation.
        J Virol. 2008; 82: 10408-10417
        • Vahidnezhad H.
        • Youssefian L.
        • Saeidian A.H.
        • Mansoori B.
        • Jazayeri A.
        • Azizpour A.
        • et al.
        A CIB1 splice-site founder mutation in families with typical epidermodysplasia Verruciformis.
        J Invest Dermatol. 2019; 139: 1195-1198
        • Van Doorslaer K.
        • Li Z.
        • Xirasagar S.
        • Maes P.
        • Kaminsky D.
        • Liou D.
        • et al.
        The Papillomavirus Episteme: a major update to the papillomavirus sequence database.
        Nucleic Acids Res. 2017; 45: D499-D506
        • Vanharanta S.
        • Massagué J.
        Field cancerization: something new under the sun.
        Cell. 2012; 149: 1179-1181
        • Venuti A.
        • Lohse S.
        • Tommasino M.
        • Smola S.
        Cross-talk of cutaneous beta human papillomaviruses and the immune system: determinants of disease penetrance.
        Phil Trans R Soc B Biol Sci. 2019; 37420180287
        • Viarisio D.
        • Mueller-Decker K.
        • Kloz U.
        • Aengeneyndt B.
        • Kopp-Schneider A.
        • Gröne H.J.
        • et al.
        E6 and E7 from beta HPV38 cooperate with ultraviolet light in the development of actinic keratosis-like lesions and squamous cell carcinoma in mice.
        PLoS Pathog. 2011; 7 ([published correction appears in PloS Pathog 2016;12:e1006005])e1002125
        • Viarisio D.
        • Müller-Decker K.
        • Accardi R.
        • Robitaille A.
        • Dürst M.
        • Beer K.
        • et al.
        Beta HPV38 oncoproteins act with a hit-and-run mechanism in ultraviolet radiation-induced skin carcinogenesis in mice.
        PLoS Pathog. 2018; 14e1006783
        • Wallace N.A.
        • Galloway D.A.
        Manipulation of cellular DNA damage repair machinery facilitates propagation of human papillomaviruses.
        Semin Cancer Biol. 2014; 26: 30-42
        • Wallace N.A.
        • Robinson K.
        • Howie H.L.
        • Galloway D.A.
        HPV 5 and 8 E6 abrogate ATR activity resulting in increased persistence of UVB induced DNA damage.
        PLoS Pathog. 2012; 8e1002807
        • Wallace N.A.
        • Robinson K.
        • Howie H.L.
        • Galloway D.A.
        β-HPV 5 and 8 E6 disrupt homology dependent double strand break repair by attenuating BRCA1 and BRCA2 expression and foci formation.
        PLoS Pathog. 2015; 11e1004687
        • Weissenborn S.J.
        • Nindl I.
        • Purdie K.
        • Harwood C.
        • Proby C.
        • Breuer J.
        • et al.
        Human papillomavirus-DNA loads in actinic keratoses exceed those in non-melanoma skin cancers.
        J Invest Dermatol. 2005; 125: 93-97
        • Wendel S.O.
        • Wallace N.A.
        Loss of genome fidelity: beta HPVs and the DNA damage response.
        Front Microbiol. 2017; 8: 2250
        • Willenbrink T.J.
        • Ruiz E.S.
        • Cornejo C.M.
        • Schmults C.D.
        • Arron S.T.
        • Jambusaria-Pahlajani A.
        Field cancerization: definition, epidemiology, risk factors, and outcomes.
        J Am Acad Dermatol. 2020; 83: 709-717
        • Zavattaro E.
        • Azzimonti B.
        • Mondini M.
        • De Andrea M.
        • Borgogna C.
        • Dell’Oste V.
        • et al.
        Identification of defective Fas function and variation of the perforin gene in an epidermodysplasia verruciformis patient lacking EVER1 and EVER2 mutations.
        J Invest Dermatol. 2008; 128: 732-735
        • Zhao Y.
        • Amorrortu R.P.
        • Fenske N.A.
        • Cherpelis B.
        • Messina J.L.
        • Sondak V.K.
        • et al.
        Cutaneous viral infections associated with ultraviolet radiation exposure.
        Int J Cancer. 2021; 148: 448-458