Advertisement
Original Article|Articles in Press

CXCL9 Links Skin Inflammation and Fibrosis through CXCR3-Dependent Upregulation of Col1a1 in Fibroblasts

Published:January 25, 2023DOI:https://doi.org/10.1016/j.jid.2022.11.025
      Morphea is characterized by initial inflammation followed by fibrosis of the skin and soft tissue. Despite its substantial morbidity, the pathogenesis of morphea is poorly studied. Previous work showed that CXCR3 ligands CXCL9 and CXCL10 are highly upregulated in the sera and lesional skin of patients with morphea. We found that an early inflammatory subcutaneous bleomycin mouse model of dermal fibrosis mirrors the clinical, histological, and immune dysregulation observed in human morphea. We used this model to examine the role of the CXCR3 chemokine axis in the pathogenesis of cutaneous fibrosis. Using the REX3 (Reporting the Expression of CXCR3 ligands) mice, we characterized which cells produce CXCR3 ligands over time. We found that fibroblasts contribute the bulk of CXCL9-RFP and CXCL10-BFP by percentage, whereas macrophages produce high amounts on a per-cell basis. To determine whether these chemokines are mechanistically involved in pathogenesis, we treated Cxcl9-, Cxcl10-, or Cxcr3-deficient mice with bleomycin and found that fibrosis is dependent on CXCL9 and CXCR3. Addition of recombinant CXCL9 but not CXCL10 to cultured mouse fibroblasts induced Col1a1 mRNA expression, indicating that the chemokine itself contributes to fibrosis. Taken together, our studies provide evidence that CXCL9 and its receptor CXCR3 are functionally required for inflammatory fibrosis.

      Abbreviation:

      APC (antigen-presenting cell), REX3 (Reporting the Expression of CXCR3 ligands)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'
      Society Members (SID/ESDR), remember to log in for access.

      Subscribe:

      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abbas L.
        • Joseph A.
        • Kunzler E.
        • Jacobe H.T.
        Morphea: progress to date and the road ahead.
        Ann Transl Med. 2021; 9: 437
        • Arai K.Y.
        • Hara T.
        • Nagatsuka T.
        • Kudo C.
        • Tsuchiya S.
        • Nomura Y.
        • et al.
        Postnatal changes and sexual dimorphism in collagen expression in mouse skin.
        PLoS One. 2017; 12e0177534
        • Castelino F.V.
        • Seiders J.
        • Bain G.
        • Brooks S.F.
        • King C.D.
        • Swaney J.S.
        • et al.
        Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma.
        Arthritis Rheum. 2011; 63: 1405-1415
        • Colvin R.A.
        • Campanella G.S.
        • Sun J.
        • Luster A.D.
        Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function.
        J Biol Chem. 2004; 279: 30219-30227
        • Fife B.T.
        • Kennedy K.J.
        • Paniagua M.C.
        • Lukacs N.W.
        • Kunkel S.L.
        • Luster A.D.
        • et al.
        CXCL10 (IFN-gamma-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis.
        J Immunol. 2001; 166: 7617-7624
        • Flier J.
        • Boorsma D.M.
        • van Beek P.J.
        • Nieboer C.
        • Stoof T.J.
        • Willemze R.
        • et al.
        Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation.
        J Pathol. 2001; 194: 398-405
        • Groom J.R.
        • Luster A.D.
        • CXCR3 ligands: redundant, collaborative and antagonistic functions
        Immunol Cell Biol. 2011; 89: 207-215
        • Groom J.R.
        • Richmond J.
        • Murooka T.T.
        • Sorensen E.W.
        • Sung J.H.
        • Bankert K.
        • et al.
        CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation.
        Immunity. 2012; 37: 1091-1103
        • Groover M.K.
        • Richmond J.M.
        Potential therapeutic manipulations of the CXCR3 chemokine axis for the treatment of inflammatory fibrosing diseases.
        F1000Res. 2020; 9: 1197
        • Higashi-Kuwata N.
        • Makino T.
        • Inoue Y.
        • Takeya M.
        • Ihn H.
        Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma.
        Exp Dermatol. 2009; 18: 727-729
        • Jiang D.
        • Liang J.
        • Campanella G.S.
        • Guo R.
        • Yu S.
        • Xie T.
        • et al.
        Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4.
        J Clin Invest. 2010; 120: 2049-2057
        • Jiang D.
        • Liang J.
        • Hodge J.
        • Lu B.
        • Zhu Z.
        • Yu S.
        • et al.
        Regulation of pulmonary fibrosis by chemokine receptor CXCR3.
        J Clin Invest. 2004; 114: 291-299
        • Korosec A.
        • Frech S.
        • Gesslbauer B.
        • Vierhapper M.
        • Radtke C.
        • Petzelbauer P.
        • et al.
        Lineage identity and location within the dermis determine the function of papillary and reticular fibroblasts in human skin.
        J Invest Dermatol. 2019; 139: 342-351
        • Kouroumalis A.
        • Nibbs R.J.
        • Aptel H.
        • Wright K.L.
        • Kolios G.
        • Ward S.G.
        The chemokines CXCL9, CXCL10, and CXCL11 differentially stimulate G alpha i-independent signaling and actin responses in human intestinal myofibroblasts.
        J Immunol. 2005; 175: 5403-5411
        • Kroeze K.L.
        • Boink M.A.
        • Sampat-Sardjoepersad S.C.
        • Waaijman T.
        • Scheper R.J.
        • Gibbs S.
        Autocrine regulation of re-epithelialization after wounding by chemokine receptors CCR1, CCR10, CXCR1, CXCR2, and CXCR3.
        J Invest Dermatol. 2012; 132: 216-225
        • Leitenberger J.J.
        • Cayce R.L.
        • Haley R.W.
        • Adams-Huet B.
        • Bergstresser P.R.
        • Jacobe H.T.
        Distinct autoimmune syndromes in morphea: a review of 245 adult and pediatric cases.
        Arch Dermatol. 2009; 145: 545-550
        • Melikoglu M.
        • Uysal S.
        • Krueger J.G.
        • Kaplan G.
        • Gogus F.
        • Yazici H.
        • et al.
        Characterization of the divergent wound-healing responses occurring in the pathergy reaction and normal healthy volunteers.
        J Immunol. 2006; 177: 6415-6421
        • Menke J.
        • Zeller G.C.
        • Kikawada E.
        • Means T.K.
        • Huang X.R.
        • Lan H.Y.
        • et al.
        CXCL9, but not CXCL10, promotes CXCR3-dependent immune-mediated kidney disease.
        J Am Soc Nephrol. 2008; 19: 1177-1189
        • Mertens J.S.
        • de Jong E.M.G.J.
        • Pandit A.
        • Seyger M.M.B.
        • Hoppenreijs E.P.A.H.
        • Thurlings R.M.
        • et al.
        Regarding “transcriptional and cytokine profiles identify CXCL9 as a biomarker of disease activity in morphea”.
        J Invest Dermatol. 2018; 138: 1212-1215
        • Mirizio E.
        • Liu C.
        • Yan Q.
        • Waltermire J.
        • Mandel R.
        • Schollaert K.L.
        • et al.
        Genetic signatures from RNA sequencing of pediatric localized scleroderma skin.
        Front Pediatr. 2021; 9: 669116
        • Mirizio E.
        • Marathi A.
        • Hershey N.
        • Ross C.
        • Schollaert K.
        • Salgado C.
        • et al.
        Identifying the signature immune phenotypes present in pediatric localized scleroderma.
        J Invest Dermatol. 2019; 139: 715-718
        • Mirizio E.
        • Tabib T.
        • Wang X.
        • Chen W.
        • Liu C.
        • Lafyatis R.
        • et al.
        Single-cell transcriptome conservation in a comparative analysis of fresh and cryopreserved human skin tissue: pilot in localized scleroderma.
        Arthritis Res Ther. 2020; 22: 263
        • O'Brien J.C.
        • Rainwater Y.B.
        • Malviya N.
        • Cyrus N.
        • Auer-Hackenberg L.
        • Hynan L.S.
        • et al.
        Transcriptional and cytokine profiles identify CXCL9 as a biomarker of disease activity in morphea.
        J Invest Dermatol. 2017; 137: 1663-1670
        • Rabquer B.J.
        • Tsou P.S.
        • Hou Y.
        • Thirunavukkarasu E.
        • Haines 3rd, G.K.
        • Impens A.J.
        • et al.
        Dysregulated expression of MIG/CXCL9, IP-10/CXCL10 and CXCL16 and their receptors in systemic sclerosis.
        Arthritis Res Ther. 2011; 13: R18
        • Rashighi M.
        • Agarwal P.
        • Richmond J.M.
        • Harris T.H.
        • Dresser K.
        • Su M.W.
        • et al.
        CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo.
        Sci Transl Med. 2014; 6: 223ra23
        • Richmond J.M.
        • Bangari D.S.
        • Essien K.I.
        • Currimbhoy S.D.
        • Groom J.R.
        • Pandya A.G.
        • et al.
        Keratinocyte-derived chemokines orchestrate T-cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease.
        J Invest Dermatol. 2017; 137: 350-358
        • Santos AM
        • Jung J
        • Aziz N
        • Kissil JL
        • Pure E
        Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice.
        J Clin Invest. 2009; 119: 3613-3625
        • Sargent J.L.
        • Li Z.
        • Aliprantis A.O.
        • Greenblatt M.
        • Lemaire R.
        • Wu M.H.
        • et al.
        Identification of optimal mouse models of systemic sclerosis by interspecies comparative genomics.
        Arthritis Rheumatol. 2016; 68: 2003-2015
        • Schulthess F.T.
        • Paroni F.
        • Sauter N.S.
        • Shu L.
        • Ribaux P.
        • Haataja L.
        • et al.
        CXCL10 impairs beta cell function and viability in diabetes through TLR4 signaling.
        Cell Metab. 2009; 9: 125-139
        • Tager A.
        • Luster A.
        • Kradin R.
        T-cell chemokines interferon-inducible protein-10 and monokine induced by interferon-gamma are upregulated in bleomycin-induced lung injury.
        Chest. 1999; 116: 90S
        • Tager A.M.
        • Kradin R.L.
        • LaCamera P.
        • Bercury S.D.
        • Campanella G.S.
        • Leary C.P.
        • et al.
        Inhibition of pulmonary fibrosis by the chemokine IP-10/CXCL10.
        Am J Respir Cell Mol Biol. 2004; 31: 395-404
        • Walker D.
        • Susa J.S.
        • Currimbhoy S.
        • Jacobe H.
        Histopathological changes in morphea and their clinical correlates: results from the Morphea in Adults and Children Cohort v.
        J. Dermatology. 2017; 76: 1124-1130
        • Wasmuth H.E.
        • Lammert F.
        • Zaldivar M.M.
        • Weiskirchen R.
        • Hellerbrand C.
        • Scholten D.
        • et al.
        Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans.
        Gastroenterology. 2009; 137 (309–19 e1–3)
        • Yamamoto T.
        • Takagawa S.
        • Katayama I.
        • Yamazaki K.
        • Hamazaki Y.
        • Shinkai H.
        • et al.
        Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma.
        J Invest Dermatol. 1999; 112: 456-462
        • Yates C.C.
        • Krishna P.
        • Whaley D.
        • Bodnar R.
        • Turner T.
        • Wells A.
        Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring.
        Am J Pathol. 2010; 176: 1743-1755
        • Yates C.C.
        • Whaley D.
        • Hooda S.
        • Hebda P.A.
        • Bodnar R.J.
        • Wells A.
        Delayed reepithelialization and basement membrane regeneration after wounding in mice lacking CXCR3.
        Wound Repair Regen. 2009; 17: 34-41
        • Yates C.C.
        • Whaley D.
        • Kulasekeran P.
        • Hancock W.W.
        • Lu B.
        • Bodnar R.
        • et al.
        Delayed and deficient dermal maturation in mice lacking the CXCR3 ELR-negative CXC chemokine receptor.
        Am J Pathol. 2007; 171: 484-495
        • Yu G.
        • Wang L.G.
        • Han Y.
        • He Q.Y.
        clusterProfiler: an R package for comparing biological themes among gene clusters.
        Omics. 2012; 16: 284-287
        • Zigler C.K.
        • Jacobe H.
        • Ardalan K.
        • Coles T.M.
        • Lane S.
        • Schollaert K.L.
        • et al.
        The importance of development standards for anchoring vignettes: an illustrative example from pediatric localized scleroderma quality of life.
        Qual Life Res. 2020; 29: 3263-3272

      Supplementary References

        • Butz W.R.
        • Clark K.C.
        • Miller R.T.
        Improved manual immunohistochemistry employing orbital mixing of reagents during incubations. Applied Immunohistochemistry.
        Lippincott-Raven, Philadelphia, PA1994: 65-67
        • Chen E.S.
        • Greenlee B.M.
        • Wills-Karp M.
        • Moller D.R.
        Bleomycin-induced pulmonary fibrosis is attenuated in interferon-[gamma] knockout mice.
        Chest. 2001; 120 (8S–8S)
        • Cheng J.
        • Wang Y.
        • Liang A.
        • Jia L.
        • Du J.
        FSP-1 silencing in bone marrow cells suppresses neointima formation in vein graft.
        Circ Res Am Heart Assoc. 2012; 110: 230-240
        • Cheung C.T.
        • Bendris N.
        • Paul C.
        • Hamieh A.
        • Anouar Y.
        • Hahne M.
        • et al.
        Cyclin A2 modulates EMT via β-catenin and phospholipase C pathways.
        Carcinogenesis. 2015; 36: 914-924
        • Chung A.C.K.
        • Huang X.R.
        • Zhou L.
        • Heuchel R.
        • Lai K.N.
        • Lan H.Y.
        Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice.
        Nephrol Dial Transplant. 2009; 24: 1443-1454
      1. Dolgalev I. MSigDB Gene Sets for Multiple Organisms in a Tidy Data Format; https://cran.r-project.org/web/packages/msigdbr/msigdbr.pdf; 2021.

        • Gordon E.J.
        • Rao S.
        • Pollard J.W.
        • Nutt S.L.
        • Lang R.A.
        • Harvey N.L.
        Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation.
        Development. 2010; 137: 3899-3910
        • Groom J.R.
        • Richmond J.
        • Murooka T.T.
        • Sorensen E.W.
        • Sung J.H.
        • Bankert K.
        • et al.
        CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation.
        Immunity. 2012; 37: 1091-1103
        • Ito Y.
        • Toriuchi N.
        • Yoshitaka T.
        • Ueno-Kudoh H.
        • Sato T.
        • Yokoyama S.
        • et al.
        The Mohawk homeobox gene is a critical regulator of tendon differentiation.
        Proc Natl Acad Sci USA. 2010; 107: 10538-10542
        • Kim D.
        • Langmead B.
        • Salzberg S.L.
        HISAT: a fast spliced aligner with low memory requirements.
        Nat Methods. 2015; 12: 357-360
        • Kothapalli D.
        • Zhao L.
        • Hawthorne E.A.
        • Cheng Y.
        • Lee E.
        • Puré E.
        • et al.
        Hyaluronan and CD44 antagonize mitogen-dependent cyclin D1 expression in mesenchymal cells.
        J Cell Biol. 2007; 176: 535-544
        • Liao Y.
        • Smyth G.K.
        • Shi W.
        featureCounts: an efficient general purpose program for assigning sequence reads to genomic features.
        Bioinformatics. 2014; 30: 923-930
        • Love M.I.
        • Huber W.
        • Anders S.
        Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
        Genome Biol. 2014; 15: 550
        • Miller R.T.
        • Estran C.
        Heat-induced epitope retrieval with a pressure cooker-suggestions for optimal use.
        Lippincott-Raven, Philadelphia, PA1995: 190-193
        • Miller R.T.
        • Groothuis C.L.
        Multitumor "sausage" blocks in immunohistochemistry. Simplified method of preparation, practical uses, and roles in quality assurance.
        Am J Clin Pathol. 1991; 96: 228-232
        • Nicolay N.H.
        • Rühle A.
        • Perez R.L.
        • Trinh T.
        • Sisombath S.
        • Weber K.J.
        • et al.
        Mesenchymal stem cells are sensitive to bleomycin treatment.
        Sci Rep. 2016; 6: 26645
        • Rashighi M.
        • Agarwal P.
        • Richmond J.M.
        • Harris T.H.
        • Dresser K.
        • Su M.W.
        • et al.
        CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo.
        Sci Transl Med. 2014; 6: 223ra23
        • Richmond J.M.
        • Bangari D.S.
        • Essien K.I.
        • Currimbhoy S.D.
        • Groom J.R.
        • Pandya A.G.
        • et al.
        Keratinocyte-derived chemokines orchestrate T-cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease.
        J Invest Dermatol. 2017; 137: 350-358
        • Shi S.-R.
        • Guo J.
        • Cote R.J.
        • Young L.L.
        • Hawes D.
        • Shi Y.
        • et al.
        Sensitivity and detection efficiency of a novel two-step detection system (PowerVision) for immunohistochemistry.
        Appl Immunohistochem Morphol. 1999; 7: 201
        • Spandidos A.
        • Wang X.
        • Wang H.
        • Dragnev S.
        • Thurber T.
        • Seed B.
        A comprehensive collection of experimentally validated primers for polymerase chain reaction quantitation of murine transcript abundance.
        BMC Genomics. 2008; 9: 633
        • Spandidos A.
        • Wang X.
        • Wang H.
        • Seed B.
        PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification.
        Nucleic Acids Res. 2010; 38: D792-D799
        • Srivastava S.P.
        • Goodwin J.E.
        • Kanasaki K.
        • Koya D.
        Inhibition of angiotensin-converting enzyme ameliorates renal fibrosis by mitigating DPP-4 level and restoring antifibrotic microRNAs.
        Genes, Basel2020: 11
        • Tager A.
        • Luster A.
        • Kradin R.
        T-cell chemokines interferon-inducible protein-10 and monokine induced by interferon-gamma are upregulated in bleomycin-induced lung injury.
        Chest. 1999; 116: 90S
        • Wang X.
        • Seed B.
        A PCR primer bank for quantitative gene expression analysis.
        Nucleic Acids Res. 2003; 31: e154
        • Wang X.
        • Spandidos A.
        • Wang H.
        • Seed B.
        PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update.
        Nucleic Acids Res. 2012; 40: D1144-D1149
        • Yamaguchi M.
        • Koike K.
        • Matsuzaki N.
        • Yoshimoto Y.
        • Taniguchi T.
        • Miyake A.
        • et al.
        The interferon family stimulates the secretions of prolactin and interleukin-6 by the pituitary gland in vitro.
        J Endocrinol Invest. 1991; 14: 457-461
        • Yu G.
        • Wang L.G.
        • Han Y.
        • He Q.Y.
        clusterProfiler: an R package for comparing biological themes among gene clusters.
        Omics. 2012; 16: 284-287