Advertisement
Original Article|Articles in Press

IFN-γ Signaling Sensitizes Melanoma Cells to BH3 Mimetics

  • Zizhen Ming
    Affiliations
    Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia

    Melanoma Institute Australia, The University of Sydney, Sydney, Australia
    Search for articles by this author
  • Su Yin Lim
    Affiliations
    Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia

    Melanoma Institute Australia, The University of Sydney, Sydney, Australia
    Search for articles by this author
  • Ashleigh Stewart
    Affiliations
    Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia

    Melanoma Institute Australia, The University of Sydney, Sydney, Australia
    Search for articles by this author
  • Bernadette Pedersen
    Affiliations
    Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia

    Melanoma Institute Australia, The University of Sydney, Sydney, Australia
    Search for articles by this author
  • Elena Shklovskaya
    Affiliations
    Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia

    Melanoma Institute Australia, The University of Sydney, Sydney, Australia
    Search for articles by this author
  • Alexander M. Menzies
    Affiliations
    Melanoma Institute Australia, The University of Sydney, Sydney, Australia

    Faculty of Medicine and Health, The University of Sydney, Sydney, Australia

    Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia

    Department of Medical Oncology, Mater Hospital, Sydney, Australia
    Search for articles by this author
  • Matteo S. Carlino
    Affiliations
    Melanoma Institute Australia, The University of Sydney, Sydney, Australia

    Faculty of Medicine and Health, The University of Sydney, Sydney, Australia

    Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia

    Department of Medical Oncology, Blacktown Cancer and Haematology Centre, Blacktown Hospital, Sydney, Australia
    Search for articles by this author
  • Richard F. Kefford
    Affiliations
    Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia

    Melanoma Institute Australia, The University of Sydney, Sydney, Australia
    Search for articles by this author
  • Jenny H. Lee
    Affiliations
    Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia

    Melanoma Institute Australia, The University of Sydney, Sydney, Australia

    Chris O’Brien Lifehouse, Camperdown, Australia
    Search for articles by this author
  • Richard A. Scolyer
    Affiliations
    Melanoma Institute Australia, The University of Sydney, Sydney, Australia

    Faculty of Medicine and Health, The University of Sydney, Sydney, Australia

    Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia

    Charles Perkins Centre, The University of Sydney, Sydney, Australia
    Search for articles by this author
  • Georgina V. Long
    Affiliations
    Melanoma Institute Australia, The University of Sydney, Sydney, Australia

    Faculty of Medicine and Health, The University of Sydney, Sydney, Australia

    Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia

    Department of Medical Oncology, Mater Hospital, Sydney, Australia

    Charles Perkins Centre, The University of Sydney, Sydney, Australia
    Search for articles by this author
  • Helen Rizos
    Correspondence
    Correspondence: Helen Rizos, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia.
    Affiliations
    Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia

    Melanoma Institute Australia, The University of Sydney, Sydney, Australia
    Search for articles by this author
Published:February 01, 2023DOI:https://doi.org/10.1016/j.jid.2023.01.017
      Immunotherapy targeting PD-1 and/or CTLA4 leads to durable responses in a proportion of patients with melanoma. However, many patients will not respond to these immune checkpoint inhibitors, and up to 60% of responding patients will develop treatment resistance. We describe a vulnerability in melanoma driven by immune cell activity that provides a pathway towards additional treatment options. This study evaluated short-term melanoma cell lines (referred to as PD1 PROG cells) derived from melanoma metastases that progressed on PD-1 inhibitor–based therapy. We show that the cytokine IFN-γ primes melanoma cells for apoptosis by promoting changes in the accumulation and interactions of apoptotic regulators MCL-1, NOXA, and BAK. The addition of pro-apoptotic BH3 mimetic drugs sensitized PD1 PROG melanoma cells to apoptosis in response to IFN-γ or autologous immune cell activation. These findings provide translatable strategies for combination therapies in melanoma.

      Abbreviation:

      KO (knockout)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'
      Society Members (SID/ESDR), remember to log in for access.

      Subscribe:

      Subscribe to Journal of Investigative Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Andersen R.
        • Borch T.H.
        • Draghi A.
        • Gokuldass A.
        • Rana M.A.H.
        • Pedersen M.
        • et al.
        T cells isolated from patients with checkpoint inhibitor-resistant melanoma are functional and can mediate tumor regression.
        Ann Oncol. 2018; 29: 1575-1581
        • Arance A.M.
        • Cruz-Merino Ldl
        • Petrella T.M.
        • Jamal R.
        • Ny L.
        • Carneiro A.
        • et al.
        Lenvatinib (len) plus pembrolizumab (pembro) for patients (pts) with advanced melanoma and confirmed progression on a PD-1 or PD-L1 inhibitor: Updated findings of LEAP-004.
        J Clin Oncol. 2021; 39: 9504
        • Ascierto P.A.
        • Ferrucci P.F.
        • Fisher R.
        • Del Vecchio M.
        • Atkinson V.
        • Schmidt H.
        • et al.
        Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma.
        Nat Med. 2019; 25: 941-946
        • Bai Y.
        • Ahmad U.
        • Wang Y.
        • Li J.H.
        • Choy J.C.
        • Kim R.W.
        • et al.
        Interferon-gamma induces X-linked inhibitor of apoptosis-associated factor-1 and Noxa expression and potentiates human vascular smooth muscle cell apoptosis by STAT3 activation.
        J Biol Chem. 2008; 283: 6832-6842
        • Barthson J.
        • Germano C.M.
        • Moore F.
        • Maida A.
        • Drucker D.J.
        • Marchetti P.
        • et al.
        Cytokines tumor necrosis factor-α and interferon-γ induce pancreatic β-cell apoptosis through STAT1-mediated Bim protein activation.
        J Biol Chem. 2011; 286: 39632-39643
        • Benci J.L.
        • Xu B.
        • Qiu Y.
        • Wu T.J.
        • Dada H.
        • Twyman-Saint Victor C.
        • et al.
        Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade.
        Cell. 2016; 167: 1540-1554.e12
        • Carlino M.S.
        • Larkin J.
        • Long G.V.
        Immune checkpoint inhibitors in melanoma.
        Lancet. 2021; 398: 1002-1014
        • Chen L.
        • Willis S.N.
        • Wei A.
        • Smith B.J.
        • Fletcher J.I.
        • Hinds M.G.
        • et al.
        Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function.
        Mol Cell. 2005; 17: 393-403
        • Czabotar P.E.
        • Lessene G.
        • Strasser A.
        • Adams J.M.
        Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy.
        Nat Rev Mol Cell Biol. 2014; 15: 49-63
        • DiNardo C.D.
        • Jonas B.A.
        • Pullarkat V.
        • Thirman M.J.
        • Garcia J.S.
        • Wei A.H.
        • et al.
        Azacitidine and venetoclax in previously untreated acute myeloid leukemia.
        N Engl J Med. 2020; 383: 617-629
        • Dummer R.
        • Lebbé C.
        • Atkinson V.
        • Mandalà M.
        • Nathan P.D.
        • Arance A.
        • et al.
        Combined PD-1, BRAF and MEK inhibition in advanced BRAF-mutant melanoma: safety run-in and biomarker cohorts of COMBI-i.
        Nat Med. 2020; 26: 1557-1563
        • Gao J.
        • Shi L.Z.
        • Zhao H.
        • Chen J.
        • Xiong L.
        • He Q.
        • et al.
        Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy.
        Cell. 2016; 167: 397-404.e9
        • Grasso C.S.
        • Tsoi J.
        • Onyshchenko M.
        • Abril-Rodriguez G.
        • Ross-Macdonald P.
        • Wind-Rotolo M.
        • et al.
        Conserved interferon-γ signaling drives clinical response to immune checkpoint blockade therapy in melanoma.
        Cancer Cell. 2020; 38: 500-515.e3
        • Gupta V.A.
        • Matulis S.M.
        • Barwick B.G.
        • Bog R.D.
        • Shebelut C.W.
        • Shanmugam M.
        • et al.
        Venetoclax ex vivo functional profiling predicts improved progression-free survival.
        Blood Cancer J. 2022; 12: 115
        • Juárez-Salcedo L.M.
        • Desai V.
        • Dalia S.
        Venetoclax: evidence to date and clinical potential.
        Drugs Context. 2019; 8: 212574
        • Kohlhapp F.J.
        • Haribhai D.
        • Mathew R.
        • Duggan R.
        • Ellis P.A.
        • Wang R.
        • et al.
        Venetoclax increases intratumoral effector T cells and antitumor efficacy in combination with immune checkpoint blockade.
        Cancer Discov. 2021; 11: 68-79
        • Kotschy A.
        • Szlavik Z.
        • Murray J.
        • Davidson J.
        • Maragno A.L.
        • Le Toumelin-Braizat G.
        • et al.
        The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models.
        Nature. 2016; 538: 477-482
        • Larkin J.
        • Chiarion-Sileni V.
        • Gonzalez R.
        • Grob J.J.
        • Rutkowski P.
        • Lao C.D.
        • et al.
        Five-year survival with combined nivolumab and ipilimumab in advanced melanoma.
        N Engl J Med. 2019; 381: 1535-1546
        • Lee J.H.
        • Shklovskaya E.
        • Lim S.Y.
        • Carlino M.S.
        • Menzies A.M.
        • Stewart A.
        • et al.
        Transcriptional downregulation of MHC class I and melanoma de- differentiation in resistance to PD-1 inhibition.
        Nat Commun. 2020; 11: 1897
        • Li J.
        • Xu J.
        • Obatoclax Li Z.
        the pan-Bcl-2 inhibitor sensitizes hepatocellular carcinoma cells to promote the anti-tumor efficacy in combination with immune checkpoint blockade.
        Transl Oncol. 2021; 14: 101116
        • Liberzon A.
        • Birger C.
        • Thorvaldsdóttir H.
        • Ghandi M.
        • Mesirov J.P.
        • Tamayo P.
        The Molecular Signatures Database (MSigDB) hallmark gene set collection.
        Cell Syst. 2015; 1: 417-425
        • Lipson E.J.
        • Tawbi H.A.-H.
        • Schadendorf D.
        • Ascierto P.A.
        • Matamala L.
        • Gutiérrez E.C.
        • et al.
        Relatlimab (RELA) plus nivolumab (NIVO) versus NIVO in first-line advanced melanoma: primary phase III results from RELATIVITY-047 (CA224-047).
        J Clin Oncol. 2021; 39: 9503
        • Merino D.
        • Kelly G.L.
        • Lessene G.
        • Wei A.H.
        • Roberts A.W.
        • Strasser A.
        BH3-mimetic drugs: blazing the trail for new cancer medicines.
        Cancer Cell. 2018; 34: 879-891
        • Mojic M.
        • Takeda K.
        • Hayakawa Y.
        The dark side of IFN-γ: its role in promoting cancer immunoevasion.
        Int J Mol Sci. 2017; 19
        • Nangia V.
        • Siddiqui F.M.
        • Caenepeel S.
        • Timonina D.
        • Bilton S.J.
        • Phan N.
        • et al.
        Exploiting MCL1 dependency with combination MEK + MCL1 inhibitors leads to induction of apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer.
        Cancer Discov. 2018; 8: 1598-1613
        • Oltersdorf T.
        • Elmore S.W.
        • Shoemaker A.R.
        • Armstrong R.C.
        • Augeri D.J.
        • Belli B.A.
        • et al.
        An inhibitor of Bcl-2 family proteins induces regression of solid tumours.
        Nature. 2005; 435: 677-681
        • Opferman J.T.
        • Letai A.
        • Beard C.
        • Sorcinelli M.D.
        • Ong C.C.
        • Korsmeyer S.J.
        Development and maintenance of B and T lymphocytes requires anti-apoptotic MCL-1.
        Nature. 2003; 426: 671-676
        • Ott P.A.
        • Hu Z.
        • Keskin D.B.
        • Shukla S.A.
        • Sun J.
        • Bozym D.J.
        • et al.
        An immunogenic personal neoantigen vaccine for patients with melanoma.
        Nature. 2017; 547: 217-221
        • Ribas A.
        • Dummer R.
        • Puzanov I.
        • VanderWalde A.
        • Andtbacka R.H.I.
        • Michielin O.
        • et al.
        Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy.
        Cell. 2017; 170: 1109-1119.e10
        • Robert C.
        • Ribas A.
        • Schachter J.
        • Arance A.
        • Grob J.J.
        • Mortier L.
        • et al.
        Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study.
        Lancet Oncol. 2019; 20: 1239-1251
        • Roberts A.W.
        • Davids M.S.
        • Pagel J.M.
        • Kahl B.S.
        • Puvvada S.D.
        • Gerecitano J.F.
        • et al.
        Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia.
        N Engl J Med. 2016; 374: 311-322
        • Sale M.J.
        • Minihane E.
        • Monks N.R.
        • Gilley R.
        • Richards F.M.
        • Schifferli K.P.
        • et al.
        Targeting melanoma’s MCL1 bias unleashes the apoptotic potential of BRAF and ERK1/2 pathway inhibitors.
        Nat Commun. 2019; 10: 5167
        • Seymour L.
        • Bogaerts J.
        • Perrone A.
        • Ford R.
        • Schwartz L.H.
        • Mandrekar S.
        • et al.
        iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics.
        Lancet Oncol. 2017; 18: e143-e152
        • Shin D.S.
        • Zaretsky J.M.
        • Escuin-Ordinas H.
        • Garcia-Diaz A.
        • Hu-Lieskovan S.
        • Kalbasi A.
        • et al.
        Primary resistance to PD-1 blockade mediated by JAK1/2 mutations.
        Cancer Discov. 2017; 7: 188-201
        • Sucker A.
        • Zhao F.
        • Pieper N.
        • Heeke C.
        • Maltaner R.
        • Stadtler N.
        • et al.
        Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions.
        Nat Commun. 2017; 8: 15440
        • Takeuchi H.
        • Wang J.
        • Kawanokuchi J.
        • Mitsuma N.
        • Mizuno T.
        • Suzumura A.
        Interferon-gamma induces microglial-activation-induced cell death: a hypothetical mechanism of relapse and remission in multiple sclerosis.
        Neurobiol Dis. 2006; 22: 33-39
        • Tirosh I.
        • Izar B.
        • Prakadan S.M.
        • Wadsworth 2nd, M.H.
        • Treacy D.
        • Trombetta J.J.
        • et al.
        Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.
        Science. 2016; 352: 189-196
        • Tse C.
        • Shoemaker A.R.
        • Adickes J.
        • Anderson M.G.
        • Chen J.
        • Jin S.
        • et al.
        ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor.
        Cancer Res. 2008; 68: 3421-3428
        • Tseng H.Y.
        • Dreyer J.
        • Emran A.A.
        • Gunatilake D.
        • Pirozyan M.
        • Cullinane C.
        • et al.
        Co-targeting bromodomain and extra-terminal proteins and MCL1 induces synergistic cell death in melanoma.
        Int J Cancer. 2020; 147: 2176-2189
        • Willis S.N.
        • Chen L.
        • Dewson G.
        • Wei A.
        • Naik E.
        • Fletcher J.I.
        • et al.
        Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins.
        Genes Dev. 2005; 19: 1294-1305
        • Zaretsky J.M.
        • Garcia-Diaz A.
        • Shin D.S.
        • Escuin-Ordinas H.
        • Hugo W.
        • Hu-Lieskovan S.
        • et al.
        Mutations associated with acquired resistance to PD-1 blockade in melanoma.
        N Engl J Med. 2016; 375: 819-829
        • Zheng Q.Y.
        • Cao Z.H.
        • Hu X.B.
        • Li G.Q.
        • Dong S.F.
        • Xu G.L.
        • et al.
        LIGHT/IFN-γ triggers β cells apoptosis via NF-κB/Bcl2-dependent mitochondrial pathway.
        J Cell Mol Med. 2016; 20: 1861-1871

      Supplementary References

        • Barbie D.A.
        • Tamayo P.
        • Boehm J.S.
        • Kim S.Y.
        • Moody S.E.
        • Dunn I.F.
        • et al.
        Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.
        Nature. 2009; 462: 108-112
        • Degasperi A.
        • Birtwistle M.R.
        • Volinsky N.
        • Rauch J.
        • Kolch W.
        • Kholodenko B.N.
        Evaluating strategies to normalise biological replicates of Western blot data.
        PLoS One. 2014; 9e87293
        • Kortylewski M.
        • Komyod W.
        • Kauffmann M.E.
        • Bosserhoff A.
        • Heinrich P.C.
        • Behrmann I.
        Interferon-γ-mediated growth regulation of melanoma cells: involvement of STAT1-dependent and STAT1-independent signals.
        J Invest Dermatol. 2004; 122: 414-422
        • Lee J.H.
        • Shklovskaya E.
        • Lim S.Y.
        • Carlino M.S.
        • Menzies A.M.
        • Stewart A.
        • et al.
        Transcriptional downregulation of MHC class I and melanoma de- differentiation in resistance to PD-1 inhibition.
        Nat Commun. 2020; 11: 1897
        • Subramanian A.
        • Tamayo P.
        • Mootha V.K.
        • Mukherjee S.
        • Ebert B.L.
        • Gillette M.A.
        • et al.
        Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
        Proc Natl Acad Sci USA. 2005; 102: 15545-15550